DOI QR코드

DOI QR Code

Influences of the Addition of Hydride-Forming Elements and Oxide and Hydriding-Dehydriding Cycling on the Hydriding and Dehydriding Characteristics of Mg

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2012.01.02
  • 발행 : 2012.05.25

초록

Magnesium prepared by mechanical grinding under $H_2$ (reactive mechanical grinding) with transition elements or oxides showed relatively high hydriding and dehydriding rates when the content of additives was about 20 wt%. Ni was chosen as a transition element to be added. $Fe_2O_3$ was selected as an oxide to be added. Ti was also selected since it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. A sample $Mg-14Ni-3Fe_2O_3-3Ti$ was prepared by reactive mechanical grinding, and its hydrogen storage properties were examined. This sample absorbs 4.02 wt% H for 5 min, and 4.15 wt% H for 10 min, and 4.42 wt% H for 60 min at n = 2. It desorbs 2.46 wt% H for 10 min, 3.98 wt% H for 30 min, and 4.20 wt% H for 60 min at n = 2. The effects of the Ni, $3Fe_2O_3$, and Ti addition, and hydriding-dehydriding cycling were discussed.

키워드

참고문헌

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. A. Vose, Metal Hydrides, U.S. Patent, 2,944, 587 (1961).
  3. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).
  5. M. Y. Song, Y. J. Kwak, H. R. Park, and S. H. Hong, J. Ind. Eng. Chem. 17, 700 (2011). https://doi.org/10.1016/j.jiec.2011.05.020
  6. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  7. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  8. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  9. M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012). https://doi.org/10.1007/s12540-012-2011-9
  10. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151(1983). https://doi.org/10.1016/0022-5088(83)90261-8
  11. M. Lucaci, A. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd. 488, 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  12. Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25(Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  13. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  14. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011). https://doi.org/10.1016/j.jallcom.2010.11.072
  15. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012) https://doi.org/10.1016/j.ijhydene.2011.03.082
  16. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  17. Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  18. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  19. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  20. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  21. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  22. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985). https://doi.org/10.1016/0360-3199(85)90024-2
  23. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987). https://doi.org/10.1016/0022-5088(87)90502-9
  24. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  25. J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  26. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm, and J. S. Bae, J. Alloys Compd. 415, 266 (2006). https://doi.org/10.1016/j.jallcom.2005.08.002
  27. M. Y. Song, S. H. Baek, J. L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161
  28. S. N. Kwon, S. H. Hong, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 35, 13055 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.068