DOI QR코드

DOI QR Code

기계적으로 합성한 분말로부터 급속 소결에 의한 나노 구조의 Co-Al2O3 복합재료 제조

Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering

  • 박나라 (전북대학교 신소재공학부 신소재개발연구소) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발연구소)
  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced materials Development, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced materials Development, Chonbuk National University)
  • 투고 : 2012.06.11
  • 발행 : 2012.12.25

초록

Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단, 한국에너지평가원(KETEP)

참고문헌

  1. L. Ceschini, G. Minak, and A. Morri, Comp. Sci. Tech. 66, 333 (2006). https://doi.org/10.1016/j.compscitech.2005.04.044
  2. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. 29, 49 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3
  3. D. J. Lloyd, Int. Mater. Rev. 39, 1 (1994). https://doi.org/10.1179/095066094790150982
  4. J. M. Torralba and F. Velasco, J. Mater. Proce. Tech. 133, 203 (2006).
  5. R. Fan, B. Liu, J. Zhang, J. Bi, and Y. Yin, Mater. Chem. Phys. 91, 140 (2005). https://doi.org/10.1016/j.matchemphys.2004.11.004
  6. S. Paris, E. Gaffet, F. Bernard, and Z. A. Munir, Scr. Mater. 50, 691 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.019
  7. T. Ungar and A. Borbely, Nanostruct. Mater. 11, 103 (1999). https://doi.org/10.1016/S0965-9773(99)00023-9
  8. A. Hirata, H. Zheng, and M. Yoshikawa, Diamond Related Mater. 7, 1669 (1998). https://doi.org/10.1016/S0925-9635(98)00242-8
  9. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  10. M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, Int. J. of Refractory Met. & Hard Mater. 20, 41 (2002). https://doi.org/10.1016/S0263-4368(01)00069-5
  11. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  12. I. J. Shon, H. Y. Song, S. W. Cho, W. B. Kim, and C. Y. Suh, Korean J. Met. Mater. 50, 39 (2012). https://doi.org/10.3365/KJMM.2012.50.1.039
  13. C. Suryanarayana, Grant Norton M., X-ray diffraction A Practical Approach. p. 207, Plenum Press (1998).
  14. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  15. J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  16. J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  17. J. E. Garay, U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  18. R. L. Coble, J. Appl. Phys. 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  19. H. Cheol, H. Kuk, I. J. Shon, and I. Y. Ko, Journal of Ceramic Processing Research 7, 327 (2006).
  20. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  21. http://en.wikipedia.org/wiki/Elastic properties of the elements (data page).
  22. N. Mohamed, Rahaman, and Aihua Yao, J. Am. Ceram. Soc. 90, 1965 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x