DOI QR코드

DOI QR Code

Development of MgH2-Ni Hydrogen Storage Alloy Requiring No Activation Process via Reactive Mechanical Grinding

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Lee, Seong Ho (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
  • Received : 2012.04.24
  • Published : 2012.12.25

Abstract

$MgH_2$ was employed as a starting material instead of Mg in this work. A sample with a composition of 94 wt% $MgH_2-6$ wt% Ni (called $MgH_2-6Ni$) was prepared by reactive mechanical grinding. The hydriding and dehydriding properties were then examined. An $MgH_2-Ni$ hydrogen storage alloy that does not require an activation process was developed. The alloy was prepared in a planetary ball mill by grinding for 4 h at a ball disc revolution speed of 250 rpm under a hydrogen pressure of about 12 bar. The sample absorbed 3.74 wt% H for 5 min, 4.07 wt% H for 10 min, and 4.41 wt% H for 60 min at 573 K under 12 bar $H_2$, and desorbed 0.93 wt% H for 10 min, 1.99 wt% H for 30 min, and 3.16 wt% H for 60 min at 573 K under 1.0 bar $H_2$. $MgH_2-6Ni$ after reactive mechanical grinding contained ${\beta}-MgH_2$ (a room temperature form of $MgH_2$), Ni, ${\gamma}-MgH_2$ (a high pressure form of $MgH_2$), and a very small amount of MgO. Reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation, and to reduce the particle size of Mg. $Mg_2Ni$ formed during reactive mechanical grinding also increases the hydriding and dehydriding rates of the sample.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011). https://doi.org/10.3365/KJMM.2011.49.4.298
  3. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  5. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  6. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  8. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011). https://doi.org/10.1016/j.jallcom.2010.11.072
  9. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  10. M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012). https://doi.org/10.1007/s12540-012-2011-9
  11. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  12. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd. 488, 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  13. Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25 (Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  14. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  15. Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  16. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  17. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  18. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan II I, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  19. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  20. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985). https://doi.org/10.1016/0360-3199(85)90024-2
  21. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987). https://doi.org/10.1016/0022-5088(87)90502-9
  22. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  23. J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  24. M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999). https://doi.org/10.1007/BF03026163