DOI QR코드

DOI QR Code

Effects of the Ordering Reaction on High Temperature Mechanical Behavior in Alloy 600

Alloy 600에서 고온 기계적 거동에 미치는 규칙 반응의 영향

  • Kim, Sung Soo (Nuclear Materials Research Dept. Korea atomic Energy Research Institute) ;
  • Kim, Dae Whan (Nuclear Materials Research Dept. Korea atomic Energy Research Institute) ;
  • Kim, Young Suk (Nuclear Materials Research Dept. Korea atomic Energy Research Institute)
  • 김성수 (한국원자력연구원 원자력재료연구부) ;
  • 김대환 (한국원자력연구원 원자력재료연구부) ;
  • 김영석 (한국원자력연구원 원자력재료연구부)
  • Received : 2012.03.19
  • Published : 2012.10.25

Abstract

The effects of the ordering reaction on high temperature mechanical behavior is investigated by tensile tests at $2{\times}10^{-2}/s-3.3{\times}10^{-5}/s$ up to $745^{\circ}C$. The tensile deformed region is examined by differential scanning calorimeter (DSC), TEM, and high resolution neutron diffraction (HRPD). The results showed that a plateau of tensile strength appeared at $150-500^{\circ}C$ whereas the elongation minimum occurred at about $600^{\circ}C$. This suggests that the occurrence of a plateau does not cause the elongation minimum. The temperature of the elongation minimum decreases with the strain rate. HRPD results show a lattice contraction in the tensile deformed specimen at the temperature of the plateau occurring region. The plateau of tensile strength, the lattice contraction, and the occurrence of serration appeared in the same temperature region.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Alexandreanu and G. S. Was, Corrosion 59, 705 (2003).
  2. C. Crawford and G. S. Was, Metal. Mater. Trans. 23, 1195 (1992).
  3. F. Vaillant, J. Boursier, L. Legras, B. Yrieix, E. Lemarie, J. Champredonde, and C. Amzallag, in 13rd Environmental Degradation of Materials in Nuclear Power Systems, Paper No. 0046, Vancouver, Canada (2007).
  4. S. Kim and J. S. Kim, J. Kor. Inst. Met. & Mater. 44, 473 (2006).
  5. S. S. Kim, I. H. Kook, and J. S. Kim, Mat. Sci. Eng. 279, 142 (2000).
  6. D. A. Porter and K. E. Easterling, Van Nostrand Reinhold Company 263, 358 (1981).
  7. P. Gordon, Principles of Phase Diagrams in Materials Science, 107, McGraw- Hill Book Company (1968).
  8. R. E. Smallman, Modern Physical Metallurgy, 4th ed., Butterworths, 119, 130 (1985).
  9. C. Barrett and T. B. Massalski, Structure of Metals 3rd ed. pp.275-305, 533, Pergamon Press (1980).
  10. T. B. Massalski, J. L. Murray, L. H. Benett, and H. Baker, Binary Alloy Phase Diagrams, ASM, 843 (1986).
  11. M. Hirabayashi, M. Koiwa, K. Tanaka, T. Tagaki, T. Saburi, S. Nenno, and H. Nishiyama, Trans. Japan Inst. Metals 10, 365 (1969).
  12. S. S. Kim, J. S. Kim, S. S. Hwang, and H. P. Kim, Proceedings of Korean Nuclear Society 2008 Fall Meeting, p.237 (2008)
  13. S. Kim, D. G. Park, and Y. M. Cheong, Korean J. Met. Mater. 49, 462 (2011)
  14. G. E. Dieter, Mechanical Metallurgy, 3rd ed., 201 (1986).