Antioxidant and Neuronal Cell Protective Effects of Aqueous Extracts from Lotus Leaf Tea

  • Jeong, Chang-Ho (Wooyang Frozen Food Co., Ltd.) ;
  • Jeong, Hee-Rok (Dept. of Food Sci. & Techno., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Choi, Sung-Gil (Dept. of Food Sci. & Techno., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Heo, Ho Jin (Dept. of Food Sci. & Techno., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • Received : 2011.01.09
  • Accepted : 2012.04.27
  • Published : 2012.04.30

Abstract

Antioxidant and neuronal cell protective effects of aqueous extract from lotus (Nelumbo nucifera) leaf tea (LLTE) were investigated. The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging effect, ferric reducing antioxidant power, and malondialdehyde inhibition of LLTE were increased in a dose dependent manner. Intracellular reactive oxygen species accumulation resulting from hydrogen peroxide ($H_2O_2$) treatment was significantly reduced when LLTE were present in the media compared to PC12 cells treated with $H_2O_2$ only. In neuronal cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), LLTE showed protective effect against $H_2O_2$-induced neurotoxicity. In addition, lactate dehydrogenase release into medium was also inhibited by LLTE (7.13-43.89%). Total phenolics of LLTE were 33.16 mg/g and a quercetin was identified as major phenolics (105.93 mg/100g). Therefore, above these data suggest that LLTE including quercetin may be useful in the natural antioxidant substance, and may reduce the risk of neurodegenerative disease.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Almajano, M. P., R. Carbo, J. Jimenez, and M. H. Gordon. 2008. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 108: 55-63. https://doi.org/10.1016/j.foodchem.2007.10.040
  2. Behl, C., F. Lezoualch, T. Trapp, M. Widmann, T. Skutella, and F. Holsboer. 1997. Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138: 101-106. https://doi.org/10.1210/endo.138.1.4835
  3. Behl, C., J. B. Davis, R. Lesley, and D. Schubert. 1994. Hydrogen peroxide mediates amyloid $\beta$ protein toxicity. Cell 77: 817-827. https://doi.org/10.1016/0092-8674(94)90131-7
  4. Chang, S. T., J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang, and L. F. Shyur. 2001. Antioxidant activity of extracts from Acacia confuse bark and heartwood. J. Agr. Food Chem. 49: 3420-3424. https://doi.org/10.1021/jf0100907
  5. Chung, K. T., T. Y. Wong, C. I. Wei, Y. W. Huan, and Y. Lin. 1998. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 38: 421-464. https://doi.org/10.1080/10408699891274273
  6. Crundman, M. and P. Delaney. 2002. Antioxidant strategies for Alzheimer's disease. Proc. Nutr. Soc. 61: 191-202. https://doi.org/10.1079/PNS2002146
  7. Dasgupta, N. and B. De. 2004. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 88: 129-224. https://doi.org/10.1016/j.foodchem.2003.12.038
  8. Dorman, H. J. D. and R. Hiltunen. 2004. Fe(III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subtractions. Food Chem. 88: 193-199. https://doi.org/10.1016/j.foodchem.2003.12.039
  9. Dreosti, I. E., M. J. Wargovich, and C. S. Yang. 1997. Inhibition of carcinogenesis by tea: the evidence from experimental studies. Crit. Rev. Food Sci. Nutr. 37: 761-770. https://doi.org/10.1080/10408399709527801
  10. Goo, H. R., J. S. Cho, and D. H. Na. 2009. Simultaneous determination of quercetin and its glycosides from the leaves of Nelumbo nucifera by reversed-phase high-performance liquid chromatography. Arch. Pharm. Res. 32: 201-206. https://doi.org/10.1007/s12272-009-1136-y
  11. Ha, J. Y., K. E. Lee, J. M. Park, A. Y. Dong, and H. S. Shin. 2010. Cytoprotective activity of lotus (Nelumbo nucifera Gaertner) leaf extracts on the mouse embryonic fibroblast cell. Food Sci. Biotechnol. 19: 1171-1176. https://doi.org/10.1007/s10068-010-0167-y
  12. Hagerman, A. E., K. M. Riedl, G. A. Jones, K. N. Sovik, N. T. Ritchard, P. W. Hartzfeld, and R. L. Riechel. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887-1892. https://doi.org/10.1021/jf970975b
  13. Heo, H. J., and C. Y. Lee. 2004. Protective effect of quercetin and vitamin C against oxidative stressinduced neurodegeneration. J. Agr. Food Chem. 52:7514-7517. https://doi.org/10.1021/jf049243r
  14. Heo, H. J., H. Y. Cho, B. S. Hong, H. K. Kim, E. K. Kim, B. K. Kim, and D. H. Shin. 2001. Protective effect of 4',5-dihydroxy-3',6,7- trimethoxyflavone from Artemisia asiatica against A$\beta$ -induced oxidative stress in PC12 cells. Amyloid 8: 194-201. https://doi.org/10.3109/13506120109007362
  15. Jankun, J., S. H. Selman, R. Swiercz, and E. Skrzypczak-Jankun. 1997. Why drinking green tea could prevent cancer. Nature 387: 561. https://doi.org/10.1038/42381
  16. Jeong, C. H., G. N. Choi, J. H. Kim, J. H. Kwak, D. O. Kim, Y. J. Kim, and H. J. Heo. 2010. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 118: 278-282. https://doi.org/10.1016/j.foodchem.2009.04.134
  17. Kashiwada, Y., A. Aoshima, Y. Ikeshiro, Y. P. Chen, H. Furukawa, M. Itoigawa, T. Fujioka, K. Misashi, L. Mark Cosentino, S. L. Morris-Natschke, and K. H. Lee. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioor. Med. Chem. 13: 443-448. https://doi.org/10.1016/j.bmc.2004.10.020
  18. Kim, D. O., H. J. Heo, Y. J. Kim, H. S. Yang, and C. Y. Lee. 2005. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agr. Food Chem. 53: 9921-9927. https://doi.org/10.1021/jf0518599
  19. Kim, D. O., K. W. Lee, H. J. Lee, and C. Y. Lee. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agr. Food Chem. 50: 3713-3717. https://doi.org/10.1021/jf020071c
  20. Kou, M. C., J. H. Yen, J. T. Hong, C. L. Wang, C. W. Lin, and M. J. Wu. 2009. Cyphomandra betacea Sendt. phenolics protect LDL from oxidation and PC12 cells from oxidative stress. LWT-Food Sci. Technol. 42: 458-463. https://doi.org/10.1016/j.lwt.2008.09.010
  21. La, Cour B., P. Molgaard, and Z. Yi. 1995. Traditional Chinese medicine in treatment of hyperlipidaemia. J. Ethnopharmacol. 46: 125-129. https://doi.org/10.1016/0378-8741(95)01234-5
  22. Li, M., and Z. Xu. 2008. Quercetin in a lotus leaves extract may be responsible for antibacterial activity. Arch. Pharm. Res. 31: 640-644. https://doi.org/10.1007/s12272-001-1206-5
  23. Lin, H. Y., Y. H. Kuo, Y. L. Lin, and W. Chiang. 2008. Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). J. Agr. Food Chem. 57: 6623-6629.
  24. Markesbery, W. R. and J. M. Carney. 1999. Oxidative alterations in Alzheimer's disease. Brain Pathol. 9: 133-146.
  25. Ono, Y., E. Hattori, Y. Fukaya, S. Imai, and Y. Ohizumi. 2006. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 106: 238-244. https://doi.org/10.1016/j.jep.2005.12.036
  26. Ott, M., J. D. Robertson, V. Gogvadze, B. Zhivotovsky, and S. Orrenium. 2001. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. U.S.A. 99: 1259-1263.
  27. Ozsoy, N., A. Can, R. Yanardag, and N. Akev. 2008. Antioxidant activity of Smilax excels L. leaf extracts. Food Chem. 110: 571-583. https://doi.org/10.1016/j.foodchem.2008.02.037
  28. Salet, C., G. Moreno, F. Ricchelli, and P. Bernardi. 1997. Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore. J. Biol. Chem. 272: 21938-21943. https://doi.org/10.1074/jbc.272.35.21938
  29. Sevanian, A. and F. Ursini. 2000. Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences. Free Radic. Biol. Med. 29: 306-311. https://doi.org/10.1016/S0891-5849(00)00342-7
  30. Siddhuraju, P. and S. Manian. 2007. The antioxidant activity and free radical scavenging capacity of dietary phenol extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105: 950-958. https://doi.org/10.1016/j.foodchem.2007.04.040
  31. Silva, B. A., F. Ferreres, J. O. Malva, and A. C. P. Dias. 2005. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 90: 157-167. https://doi.org/10.1016/j.foodchem.2004.03.049
  32. Valencia, A. and J. Moran. 2004. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic. Biol. Med. 36: 1112-1125. https://doi.org/10.1016/j.freeradbiomed.2004.02.013
  33. Wang, H. and K. Helliwell. 2001. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res. Int. 34: 223-227. https://doi.org/10.1016/S0963-9969(00)00156-3
  34. Wu, M. J., L. Wang, and C. Y. Weng. 2003. Antioxidant activity of methanol extract of the lotus leaf (Nelumbo nucifera Gertn). Am. J. Clin. Med. 31: 687-698. https://doi.org/10.1142/S0192415X03001429
  35. Youdim, K. A. and J. A. Joseph. 2001. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic. Biol. Med. 30: 583-594. https://doi.org/10.1016/S0891-5849(00)00510-4
  36. Yu, D. H., Y. M. Bao, L. J. An, and M. Yang. 2009. Protection of PC12 cells against superoxide-induced damage by isoflavonoids from Astragalus mongholicus. Biomed. Environ. Sci. 22: 50-54. https://doi.org/10.1016/S0895-3988(09)60022-2