DOI QR코드

DOI QR Code

미세 영상 장치를 이용한 벽면 유동 센서 개발

Development of Wall Flow Sensor Using Micro Imaging Device

  • Lee, Seung Hwan (Graduate School of Mechanical Engineering, Gyeongsang Nat'l Univ.) ;
  • Kim, Byung Soo (Research Center for Aircraft Parts Technology, Gyeongsang Nat'l Univ.) ;
  • Kim, Hyoung-Bum (Research Center for Aircraft Parts Technology, Gyeongsang Nat'l Univ.)
  • 투고 : 2012.08.02
  • 심사 : 2012.09.04
  • 발행 : 2012.12.01

초록

능동 유동 제어의 되먹임 신호 및 벽면 전단 응력 측정 등을 위해 벽면 유동 센서가 사용되고 있다. 본 연구에서는 광학 마우스에 사용되는 미세 영상 장치를 이용하여 벽면 근처에서 2차원 및 3차원 유체 속도를 측정할 수 있는 센서를 개발하였다. 미세 영상 장치에서 나오는 영상 신호 획득 시스템을 구축하고 획득한 영상에 입자화상속도기법과 초점이탈 영상기법을 적용하여 측정 영역에서의 산란 입자의 위치를 측정하였다. 모사 유동 실험을 통해, 개발된 벽면 유동 센서의 공간 해상도 및 측정 정확도를 검증하였고 기존 미세 영상 장치의 quadrature 신호 결과와 비교하여 입자화상속도기법을 적용할 경우, 측정 정확도 및 측정 범위가 확대되는 것을 확인하였다.

A wall flow sensor has been used for feedback flow control and wall shear stress measurement. In this study, we developed a new wall flow sensor by combining the PIV algorithm and the micro image sensor used in an optical mouse. The feasibility of the wall flow sensor was investigated by using simulated fluid flow experiments. Compared with the quadrature signal from imaging devices, the accuracy of the wall flow velocity measurement was improved and the dynamic range increased. In addition, the depth information of particles was also measured by using the defocusing imaging technique.

키워드

참고문헌

  1. Gad-el-Hak, M., 2006, Flow Control: Passive, Active and Reactive Flow Management, Cambridge University press, New York.
  2. Meier, G. E. A. and Viswanath, P. R., 1999, IUTAM Symp. Mechanics of Passive and Active Flow Control, Kluwer Academic Pub., Dordrecht.
  3. King, R., 2006, Active Flow Control, Springer, Berlin.
  4. Kamiumten, S., Nagayo, H., Motosuke, M. and Honami, S., 2010, "Coupled Electrothermal Analysis of a Micro Flow Sensor With Control Circuit using Spice," Electronics and Communications in Japan, Vol. 93, pp. 58-64. https://doi.org/10.1002/ecj.10095
  5. Morioka, T., Manabu S. and Honami, S., 2001, "A Closed Loop Control of a Backward-Facing Step Flow by a Vortex Generator Jet," Trans. of JSME, Vol. 79.
  6. Seifert, A. and Pack, L. G., 2002, "Active Control of Separated Flow on a Wall-mounted "Hump" at High Reynolds Numbers," AIAA J., Vol. 40, pp.1363-1372. https://doi.org/10.2514/2.1796
  7. Yoon, S. Y. and Kim, K. C., 2006, "3D Particle Position and 3D Velocity Field Measurement in a Microvolume via the Defocusing Concept," Meas. Sci. Technol., Vol. 17, pp. 2897-2905. https://doi.org/10.1088/0957-0233/17/11/006
  8. Ng, T. W., Cheong, T. L. and Sheridan, J., 2007, "Digital Readout Manometer using an Optical Sensor," Eur. J. Phys., Vol. 28, pp. 11-16.
  9. Fujimori, Y., Ohmura, Y., Harada, T. and Kuniyosho, Y., 2009, "Wearable Motion Capture Suit with Full-body Tactile Sensors," IEEE Int. conf. on Robitics and Automation, Kobe, Japan.
  10. LED-based Sensor (ADNS-3000) Document at "http://www.avagotech.com/docs/AV02-2727EN"
  11. Eckstein, A. and Vlachos, P. P., 2009, "Assessment of Advanced Windowing Techniques for Digital Particle Image Velocimetry (DPIV)," Meas. Sci. Technol., Vol. 20, No. 7, p. 075402. https://doi.org/10.1088/0957-0233/20/7/075402