DOI QR코드

DOI QR Code

Laser Patterning of Vertically Grown Carbon Nanotubes

수직성장된 탄소나노튜브의 선택적 패터닝

  • Chang, Won Seok (Dept. Nano Mechanics, Korea Institute of Machinery and Materials)
  • 장원석 (한국기계연구원 나노역학연구실)
  • Received : 2012.06.01
  • Accepted : 2012.09.20
  • Published : 2012.12.01

Abstract

The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

실리콘 기판 위에 플라즈마 기상층착법을 이용하여 합성된 탄소나노튜브를 화학적인 방법이나 전자빔 혹은 이온빔과 같은 진공 챔버 내에서의 공정없이 펨토초레이저를 이용하여 선택적으로 패터닝 하는 방법을 구현하였다. 플라즈마 기상층착법으로 합성된 탄소나노튜브는 수직성장이 가능하며 탄소나노튜브 간의 간격을 조절하여 성장이 가능하다. 이러한 장점으로 전계방출소자, 바이오센서 등의 응용을 위하여 이용되는 합성 방법이다. 이러한 응용을 위하여 선택적으로 나노튜브를 제거하고 탄소나노튜브 끝의 촉매금속을 제거하는 것이 응용의 효율을 높이는데 매우 중요하다. 본 연구에서는 탄소나노튜브의 전기적, 구조적 특성에 영향을 줄 수 있는 화학적인 방법을 사용하지 않고 펨토초레이저를 사용하여 패터닝과 촉매금속을 제거하는 방법을 구현하였다.

Keywords

References

  1. Xie, S., Li, W., Chang, B. and Sun, L., 1991, "Mechanical and Physical Properties on Carbon Nanotube," J. Phys. Chem. Solids., Vol. 61, Issue 7, pp.1153-1158.
  2. Iijima, S., 1991, "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354, No. 6348, pp. 56-57. https://doi.org/10.1038/354056a0
  3. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., 1997, "Storage of Hydrogen in Single-Walled Carbon Nanotubes," Nature, Vol. 386, No. 6623, pp. 377-378. https://doi.org/10.1038/386377a0
  4. Lee, S. I., Howell, S. W., Raman, A., Reifenberger R., Nguyen, C. V. and Meyyappan, M., 2005, "Complex Dynamics of Carbon Nanotube Probe Tips," Ultramicroscopy, Vol. 103, Issue 2, pp. 95-102. https://doi.org/10.1016/j.ultramic.2004.09.012
  5. Zhang, Y., Gu, H. and Iijima, S., 2000, "Single-Wall Carbon Nanotubes Synthesized by Laser Ablation in a Nitrogen Atmosphere," Appl. Phys. Lett., Vol.73, Issue 26, pp. 3827-3829.
  6. Kibria, A. K., Mo, Y. H., Yun, M. H., Kim, M. J. and Nahm, K. S., 2001, "Effects of Bimetallic Catalyst Composition and Growth Parameters on the Growth Density and Diameter of Carbon Nanotubes," Korean J. Chem. Eng. Vol. 18, No. 2, pp. 208-214. https://doi.org/10.1007/BF02698461
  7. Chang, W. S., Kim, J. W., Choi, D. G. and Han, C. S., 2011, "Fabrication of Nano-Electrode Arrays of Free- Standing Carbon Nanotubes on Nano-Patterned Substrate by Imprint Method," Appl. Surf. Sci., Vol. 257, pp. 3063-3068. https://doi.org/10.1016/j.apsusc.2010.10.117
  8. Chang, W. S., Hwang, J. Y., Han, C. S., 2012, "Fabrication and Analysis of a Free-Standing Carbon Nanotube-Metal Hybrid Nanostructures," Trans. of the KSME (B), Vol. 36, No. 1, pp. 25-29.
  9. Chen, Y.-C., Cheng, H.-F., Hsieh, Y.-S. and Ysau, Y.- M., 2003, "Electron Field Emission Properties of Carbon Nanotubes During Thermal Heating and Laser Irradiation," J. Appl. Phys. Vol. 94, pp. 7739-7742. https://doi.org/10.1063/1.1629132
  10. Ma, Y.-Z., Stenger, J., Zimmermann, J., Bachilo, S. M., Smalley, R. E., Weisman, R. B. and Fleming, G. R., 2004, "Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Probed by Femtosecond Spectroscopy," J. Chem. Phys. , Vol. 120, Issue 7, pp. 3368-3373. https://doi.org/10.1063/1.1640339
  11. Wang, F., Cukovic, G., Brus, L. E. and Heinz, T. F., 2004, "Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes," Phys. Rev. Lett., Vol. 92, Issue 17, pp. 177401-177404. https://doi.org/10.1103/PhysRevLett.92.177401
  12. Lopez, M. J., Rubio, A., Alonso, J. A., Lefrant S., Metenier K. and Bonnamy S., 2002, "Patching and Tearing Single-Wall Carbon-Nanotube Ropes into Multiwall Carbon Nanotubes," Phys. Rev. Lett., Vol. 89, Issue 25, pp. 255501-255504. https://doi.org/10.1103/PhysRevLett.89.255501
  13. Atanasov, P. A., Takada, H., Nedyalkov, N. N. and Obara, M., 2007, "Nanohole Processing on Silcon Substrate by Femtosecond Laser Pulse with Localized Surface Plasmon Polarition," Appl. Surf. Sci., Vol. 253, Issue 19, pp. 8304-8308. https://doi.org/10.1016/j.apsusc.2007.02.108
  14. Dumitrica, T., Garcia, M. E., Jeschke, H. O. and Yakobson, B. I. 2004, "Selective Cap Opening in Carbon Nanotubes Driven by Laser-Induced Coherent Phonons," Phys. Rev. Lett., Vol. 92, Issue 11, pp. 117401-117404. https://doi.org/10.1103/PhysRevLett.92.117401
  15. Jeschke, H. O., Romero A. H., Garcia M. E. and Rubio, A., 2007, "Microscopic Investigation of Laser- Induced Structural Changes in Single-Wall Carbon Nanotubes," Phys. Rev. B, Vol. 75, Issue 12, pp. 125412-125422. https://doi.org/10.1103/PhysRevB.75.125412