DOI QR코드

DOI QR Code

위상최적화를 이용한 수직 다관절 로봇의 경량 설계

Lightweight Design of a Vertical Articulated Robot Using Topology Optimization

  • 투고 : 2012.05.23
  • 심사 : 2012.10.25
  • 발행 : 2012.12.01

초록

수직 다관절 로봇의 세 가지 주요 부품인 베이스프레임, 하부프레임, 상부프레임의 경량화를 위하여 위상최적화를 적용하였다. 위상최적화를 위한 설계 영역은 기존 모델을 포함시키는 단순 영역으로 설정하고 이를 삼차원 솔리드 요소로 이산화하였다. 설계 변수들은 SIMP 법을 사용하여 각각의 요소의 물성치를 파라미터화 시켰다. 로봇의 다물체 동역학 해석으로부터 얻어진 하중들을 로봇의 하중조건으로 부여하였으며 최적화의 목적 함수는 구조의 정적, 동적 강성의 조합으로 설정하고 제한조건은 질량제한조건을 부과하였다. 위상최적설계로 얻은 결과는 주조 제조에 용이한 설계로 후처리하였다. 최종 최적화 모델은 기존 모델과 비교하여 비슷하거나 큰 정적, 동적 강성을 가지면서 베이스프레임은 11.0%, 하부프레임은 12.0%, 상부프레임은 10.0% 경량화시킬 수 있었다.

Topology optimization is applied for the lightweight design of three main parts of a vertical articulated robot: a base frame, a lower and a upper frame. Design domains for optimization are set as large solid regions that completely embrace the original parts, which are discretized by using three-dimensional solid elements. Design variables are parameterized one-to-one to the material properties of each element by using the SIMP method. The objective of optimization is set as the multi-objective form combining the natural frequencies and mean compliances of a structure for which load steps of interest are selected from the multibody dynamics analysis of a robot. The obtained results of topology optimization are post-processed to designs favorable to manufacturability for casting process. The final optimized results are 11.0% (base frame), 12.0% (lower frame) and 10.0% (upper frame) lighter with similar or even higher static and dynamic stiffnesses than the original models.

키워드

참고문헌

  1. Bendsoe, M. P. and Sigmund O., 2004, Topology Optimization: Theory, Methods and Applications, Springer.
  2. Leiva, J. P., Watson, B. C. and Kosaka, I., 1999, "Modern Structural Optimization Concepts Applied to Topology Optimization," 40th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Material Conference, St. Louis, MO, pp. 1589-1596.
  3. Pedersen, C. B. W. and Allinger, P., 2006, "Industrial Implementation and Applications of Topology Optimization and Future Needs," IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pp. 229-238, Springer.
  4. Schramm, U. and Zhou, M., 2006, "Recent Developments in the Commercial Implementation of Topology Optimization," IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pp. 239-248, Springer.
  5. Yang, R. J. and Chahande, A. I., 1995, "Automotive Applications of Topology Optimization," Structural Optimization, Vol. 9, pp. 245-249. https://doi.org/10.1007/BF01743977
  6. Jang, G. W., Yoon, M. S. and Park, J. H., 2010, "Lightweight Flatbed Trailer Design by Using Topology and Thickness Optimization," Structural and Multidisciplinary Optimization, Vol. 41, No. 2, pp. 295-307. https://doi.org/10.1007/s00158-009-0409-x
  7. Altair Engineering, 2010, HyperMesh Basic Training Manual.
  8. Altair Engineering, 2010, Optistruct Training Manual.
  9. Kim, T. S. and Kim, Y. Y., 2000, "Mac-Based Mode- Tracking in Structural Topology Optimization," Computers and Structures, Vol. 74, pp. 375-383. https://doi.org/10.1016/S0045-7949(99)00056-5

피인용 문헌

  1. Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization vol.39, pp.3, 2015, https://doi.org/10.3795/KSME-A.2015.39.3.283