References
- Joyce, G. F. Nature 2002, 418, 214. https://doi.org/10.1038/418214a
- Cech, T. R.; Herschlag, D. Catalytic RNA; Eckstein, F.. Lilley, D. M. J., Eds.; Springer-Verlag: Berlin, 1996; Vol. 10, p 1.
- Thomson, J. B.; Tuschl, T.; Eckstein, F. Catalytic RNA; Eckstein, F., Lilley, D. M. J., Eds.; Springer-Verlag: Berlin, 1996; Vol. 10, p 173.
- Sontheimer, E. J.; Sun, S.; Piccirilli, J. A. Nature 1997, 388, 801. https://doi.org/10.1038/42068
- Strobel, S. A.; Shetty, K. Proc. Natl. Acad. Sci. U.S.A 1997, 94, 2903. https://doi.org/10.1073/pnas.94.7.2903
- Kim, I.-H.; Shin, S.; Jeong, Y.-J.; Hah, S. S. Tetrahedron Lett. 2010, 51, 3446. https://doi.org/10.1016/j.tetlet.2010.04.124
- Zhang, B.; Cech, T. R. Nature 1997, 390, 96. https://doi.org/10.1038/36375
- Zhang, B.; Cech, T. R. Nature 1997, 390, 96. https://doi.org/10.1038/36375
- Joseph, S.; Noller, H. F. EMBO J. 1996, 15, 910.
- Burgin, A. B.; Pace, N. R. EMBO J. 1990, 9, 4111.
- Shin, S.; Kim, I.-H.; Kang, W.; Yang, J. K.; Hah, S. S. Bioorg. Med. Chem. Lett. 2010, 20, 3322. https://doi.org/10.1016/j.bmcl.2010.04.040
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.; del Amo, D. S.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.; Wu, P. Angew. Chem. Int. Ed. 2011, 50, 8051. https://doi.org/10.1002/anie.201101817
- Seo, T. S.; Li, Z.; Ruparel, H.; Ju, J. J. Org. Chem. 2003, 68, 609. https://doi.org/10.1021/jo026615r
- Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 1053. https://doi.org/10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4
- Huisgen, R. Pure Appl. Chem. 1989, 61, 613. https://doi.org/10.1351/pac198961040613
- Sletten, E. M.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2009, 48, 6974. https://doi.org/10.1002/anie.200900942
- Lee, G.-H.; Lim, H. K.; Hah, S. S. Bull. Kor. Chem. Soc. 2011, 32, 3767. https://doi.org/10.5012/bkcs.2011.32.10.3767
- Holub, J. M.; Kirshenbaum, Chem. Soc. Rev. 2010, 39, 1325. https://doi.org/10.1039/b901977b
- Jao, C. Y.; Salic, A. Proc. Natl. Acad. Sci. USA 2008, 105, 15779. https://doi.org/10.1073/pnas.0808480105
- Paredes, E.; Das, S. R. ChemBioChem. 2011, 12, 125. https://doi.org/10.1002/cbic.201000466
Cited by
- Isomorphic Emissive GTP Surrogate Facilitates Initiation and Elongation of in Vitro Transcription Reactions vol.136, pp.43, 2014, https://doi.org/10.1021/ja5039227
- Polymerase-Mediated Site-Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA vol.56, pp.5, 2016, https://doi.org/10.1002/anie.201609327
- A T7 RNA Polymerase Mutant Enhances the Yield of 5′-Thienoguanosine-Initiated RNAs vol.19, pp.2, 2018, https://doi.org/10.1002/cbic.201700538
- An RNase P-Based Assay for Accurate Determination of the 5′-Deoxy-5′-azidoguanosine-Modified Fraction of In Vitro-Transcribed RNAs pp.14394227, 2018, https://doi.org/10.1002/cbic.201800447
- Polymerase‐Mediated Site‐Specific Incorporation of a Synthetic Fluorescent Isomorphic G Surrogate into RNA vol.129, pp.5, 2012, https://doi.org/10.1002/ange.201609327