DOI QR코드

DOI QR Code

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue

여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교

  • Received : 2012.08.30
  • Accepted : 2012.09.28
  • Published : 2012.10.30

Abstract

The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.

인체 연조직에서 기계적인 진동의 전달 특성은 조직의 탄성 특성에 의존한다. 연조직의 진동 특성으로부터 암이나 종양을 진단할 수 있기 때문에 진동의 전달 특성에 대한 연구는 중요한 의미를 가진다. 이 논문은 연조직의 표면에 위치하는 여러 형태의 응력 진동원에 의해 연조직 내에 발생되는 변위 패턴을 분석하고 비교하였다. 진동원으로는 수직하중, 접선하중, 그리고 면외전단하중이 고려되었다. 점탄성 단일층에서의 변위에 대한 이론적 표현식을 구하였고, 수치계산은 반공간 및 무한평판조직에서 수행되었다. 그리고 유한크기조직에서의 변위패턴을 유한요소법으로 시뮬레이션하였다. 응력 형태, 진동원 크기 및 주파수, 그리고 경계면이 변위에 미치는 영향이 분석되었다.

Keywords

References

  1. S. Catheline, F. Wu and M. Fink, "A solution to diffraction biases in sonoelasticity: The acoustic impulse technique," J. Acoust. Soc. Am., 105(5), pp. 2941-2950 (1999) https://doi.org/10.1121/1.426907
  2. K. J. Parker, S. R. Huang, R. A. Musulin and R. M. Lerner, "Tissue response to mechanical vibrations for sonoelasticity imaging," Ultrasound Med. Biol., 16(3), pp. 241-246 (1990) https://doi.org/10.1016/0301-5629(90)90003-U
  3. K. J. Parker, L. S. Taylor and S. Gracewski, "A unified view of imaging the elastic properties of tissue," J. Acoust. Soc. Am., 117(5), pp. 2705-2712 (2005) https://doi.org/10.1121/1.1880772
  4. S. F. Levinson, M. Shinagawa and T. Sato, "Sonoelastic determination of human skeletal muscle elasticity," J. Biomechanics, 28(10), pp. 1145-1154 (1995) https://doi.org/10.1016/0021-9290(94)00173-2
  5. M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound," Phys. Med. Biol., 45, pp. 1449-1464 (2000) https://doi.org/10.1088/0031-9155/45/6/304
  6. T. Varghese, J. A. Zagzebski, P. Rahko and C. S. Breburda, "Ultrasonic imaging of myocardial strain using cardiac elastography," Ultrasonic Imaging, 25(1), pp. 1-16 (2003) https://doi.org/10.1177/016173460302500101
  7. C. L. de Korte and A. F. W. Van der Steen, "Intravascular ultrasound elastography: an overview," Ultrasonics, 40, pp. 859-865 (2002) https://doi.org/10.1016/S0041-624X(02)00227-5
  8. Y. Yamakoshi, J. Sato and T. Sato, "Ultrasonic imaging of internal vibration of soft tissue under forced vibration," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 37(2), pp. 45-53 (1990) https://doi.org/10.1109/58.46969
  9. L. Sandrin, M. Tanter, S. Catheline and M. Fink, "Shear modulus imaging using 2-D transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 49(4), 426-435 (2002) https://doi.org/10.1109/58.996560
  10. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol., 29(10), pp. 1387-1396 (2003) https://doi.org/10.1016/S0301-5629(03)00978-5
  11. K. J. Parker, D. Fu, S. M. Gracewski, F. Yeung and S. F. Levinson, "Vibration sonoelasticity and the detectability of lesions," Ultrasound Med. Biol., 24(9), pp. 1437-1447 (1998) https://doi.org/10.1016/S0301-5629(98)00123-9
  12. S. Catheline, J. L. Thomas, F. Wu and M. A. Fink, "Diffraction field of a low frequency vibrator in soft tissues using transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 46(4), pp. 1013-1019 (1999) https://doi.org/10.1109/58.775668
  13. D. Fu, S. F. Levinson, S. M. Gracewski and K. J. Parker, "Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach," Phys. Med. Biol., 45, pp. 1495-1510 (2000) https://doi.org/10.1088/0031-9155/45/6/307
  14. L. Gao, K. J. Parker and S. K. Alam, "Sonoelasticity imaging: Theory and experimental verification," J. Acoust. Soc. Am., 97(6), pp. 3875-3886 (1995) https://doi.org/10.1121/1.412399
  15. Z. Wu, L. S. Taylor, D. J. Rubens and K. J. Parker, "Shear wave focusing for three-dimensional sonoelastography," J. Acoust. Soc. Am., 111(1), pp. 439-446 (2002) https://doi.org/10.1121/1.1419093
  16. Z. Wu, L. S. Taylor, D. J. Rubens and K. J. Parker, "Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials," Phys. Med. Biol., 49, pp. 911-922 (2004) https://doi.org/10.1088/0031-9155/49/6/003
  17. Z. Wu, K. Hoyt, D. J. Rubens and K. J. Parker, ""Sonoelastographic imaging of interference patterns for estimation of the shear velocity distribution in biomaterials," J. Acoust. Soc. Am., 120(1), pp. 535- 545 (2006) https://doi.org/10.1121/1.2203594
  18. J. McLaughlin, D. Renzi, K. Parker and Z. Wu, "Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments," J. Acoust. Soc. Am., 121(4), pp. 2438-2446 (2007) https://doi.org/10.1121/1.2534717
  19. K. Hoyt, B. Castaneda and K. J. Parker, "Two-dimensional sonoelastographic shear velocity imaging," Ultrasound Med. Biol., 34(2), pp. 276-288 (2008) https://doi.org/10.1016/j.ultrasmedbio.2007.07.011
  20. T. J. Royston, H. A. Mansy and R. H. Sandler, "Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis," J. Acoust. Soc. Am., 106(6), pp. 3678-3686 (1999) https://doi.org/10.1121/1.428219
  21. E. M. Timanin, "Displacement field produced by a surface source of vibrations in a layered biological tissue," Acoust. Phys., 48(1), pp. 98-104 (2002) https://doi.org/10.1134/1.1435397
  22. B. N. Klochkov, "Near field of a low-frequency source of forced vibration on a layered biological tissue," Acoust. Phys., 48(1), pp. 70-76 (2002)
  23. J. N. Barshinger and J. L. Rose, "Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51(11), pp. 1547-1556 (2004) https://doi.org/10.1109/TUFFC.2004.1367496
  24. K. F. Graff, "Wave Motion in Elastic Solids," Ohio State University Press (1975)
  25. J. D. Achenbach, "Wave Propagation in Elastic Solids," North-Holland, Amsterdam, (1975)
  26. B. A. Auld, "Acoustic Fields and Waves in Solids," John Wiley & Sons, New York, 1973.
  27. B. Angelsen, "Ultrasound Imaging: Waves, Signals and Signal Processing," Emantec, Trondheim, Norway, (2000)
  28. L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis and M. Ziol, "Transient elastography: A new noninvasive method for assessment of hepatic fibrosis," Ultrasound Med. & Biol., 29(12), pp. 1705-1713 (2003) https://doi.org/10.1016/j.ultrasmedbio.2003.07.001
  29. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes and S. Y. Emelianov, "Shear wave imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., 24(9), pp. 1419-1435 (1998) https://doi.org/10.1016/S0301-5629(98)00110-0
  30. K. Nightingale, S. McAleavey and G. Trahey, "Shear-wave generation using acoustic radiation force: In vivo and ex vivo results," Ultrasound Med. Biol., 29(12), pp. 1715-1723 (2003) https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
  31. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, "Fundamentals of Acoustics," John Wiley & Sons, New York, (1982)
  32. J. Bercoff, M. Tanter, M. Muller and M. Fink, "The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force," IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51(11), pp. 1523-1536 (2004) https://doi.org/10.1109/TUFFC.2004.1367494
  33. C. S. Chu and M. C. Lee, "Finite element analysis of cerebral contusion," Advances in Bioengineering, ASME-BED-Vol. 20, pp. 601-604 (1991)
  34. M. Hauth, J. Gross, W. Strasser and G. F. Buess, "Soft tissue simulation based on measured data," Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2003), Montreal, Canada, 262-270 (2003)
  35. C. R. Hou, "Design and development of a pulsed wave Doppler ultrasonic system for measuring the viscoelasicity of soft tissue," Ph. D. Dissertation, National Cheng Kung University, Taiwan (2002)