DOI QR코드

DOI QR Code

Antibacterial Activity of Triterpenoids from Clerodendron trichotomum

  • Choi, Ji Won (Department of Food Science and Nutrition, Pusan National University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Dong Gu (Department of Integrative Plant Science, Chung-Ang University) ;
  • Choi, Kyung (Department of Forest Resource Conservation, Korea National Arboretum) ;
  • Ku, Jajung (Department of Forest Resource Conservation, Korea National Arboretum) ;
  • Park, Kwang-Woo (Department of Forest Resource Conservation, Korea National Arboretum) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2012.05.24
  • Accepted : 2012.07.12
  • Published : 2012.09.30

Abstract

The aim of this research was to investigate the antibacterial activity of Clerodendron trichotomum. Antibacterial activities of the n-hexane, methylene chloride (MC), ethyl acetate, and n-butanol fractions from C. trichotomum were tested against Staphylococcus aureus, Escherichia coli, and Helicobacter pylori. The n-hexane and MC fractions showed antibacterial activity against H. pylori at a concentration of 1.7 mg/mL and showed inhibition zones of 10 and 11 mm in disc assay, respectively. Further testing of 22-dehydroclerosterol and ${\beta}$-amyrin (each 3.4 mg/mL) from the MC fraction of C. trichotomum revealed moderate antibacterial effects against E. coli, S. aureus, and H. pylori. In particular, ${\beta}$-amyrin showed clear zones of 12 and 13 mm against E. coli and H. pylori, respectively, suggesting its potential as an antibacterial agent. The active compounds from C. trichotomum might provide a promising therapeutic agent against infections by E. coli, S. aureus, and H. pylori.

Keywords

References

  1. Ahn DK (1998) Illustrated book of Korean medicinal herbs. p. 309, Kyohak Publishing Co., Seoul, Korea.
  2. Akihisa T, Matsubara Y, Ghosp P, Thakur S, Shimizu N, Tamura T et al. (1988) The 24-$\alpha$- and 24-$\beta$-epimers of 24-ethylcholesta-5,22-diene-3$\beta$-ol in two Clerodendrum species. Phytochemistry 27, 1169-72. https://doi.org/10.1016/0031-9422(88)80296-6
  3. Akihisa T, Tamura T, Matsumoto T, Kokke WCMC, Ghosh P, and Thakur S (1990) (22Z,24S)-Stigmasta-5,22,25-trien-3$\beta$-ol and other novel sterols from Clerodendrum scandens: First report of the isolation of a cis-D-22- unsaturated sterol from a higher plant. J Chem Soc Perkin Trans 1, 2213-8.
  4. Allen UD, MacDonald N, Fuite L, Chan F, and Stephens D (1999) Risk factors for resistance to "first-line" antimicrobial resistance among urinary tract isolates of Escherichia coli in children. Can Med Ass J 160, 1436-40.
  5. Aragao GF, Carneiro LMV, Junior APF, Bandeira PN, Lemos TLG, and Viana GSB (2009) Evidence for excitatory and inhibitory amino acids participation in the neuropharmacological activity of alpha- and betaamyrin acetate. Open Pharmacol J 3, 9-16. https://doi.org/10.2174/1874143600903010009
  6. Bandow JE, Brotz HL, Leichert IO, Labischinski H, and Hecker M (2003) Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother. 47, 948-55. https://doi.org/10.1128/AAC.47.3.948-955.2003
  7. Barros FWA, Bandeira PN, Lima DJB, Meira AS, Farias SS, Albuquerque MRJR et al. (2011) Amyrin esters induce cell death by apoptosis in HL- 60 leukemia cells. Bioorg Med Chem 19, 1268-76. https://doi.org/10.1016/j.bmc.2010.12.016
  8. Benkeblia N (2004) Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensm-Wissu- Technol 37, 263-8. https://doi.org/10.1016/j.lwt.2003.09.001
  9. Boar RB and Allen J (1973) a-Amyrin triterpenoids. Phytochemistry 12, 2571-8. https://doi.org/10.1016/0031-9422(73)85059-9
  10. Chae S, Kim JS, Kang KA, Bu HD, Lee Y, Seo YR et al. (2005) Antioxidant activity ofisoacteoside from Clerodendron trichotomum. J Toxicol Env Heal A 68, 389-400. https://doi.org/10.1080/15287390590900750
  11. Cho J-Y, Kawazoe K, Moon J-H, Park K-H, Murakami K, and Takaishi Y (2005) Chemical constituents from tile fruit peels of Fortunella japonica. Food Sci Biotechnol 14, 599-603.
  12. Davidson PH and Parish ME (1989) Methods of testing the efficacy of food antimicrobials. Food Technol 43, 148-52.
  13. Holanda Pinto SA, Pinto LM, Cunha GM, Chaves MH, Santos FA et al. (2008) Anti-inflammatory effect of alpha, beta-amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology 16, 48-52. https://doi.org/10.1007/s10787-007-1609-x
  14. Huang KC (1993) In the Pharmacology of Chinese Herbs. CRC press, USA. pp. 71-2.
  15. Inchi T, Shimizu T, and Yoshihira K (1996) In Biotechnology in Agriculture and Forestry. 37, p. 108, Berlin Heidelberg, Germany. https://doi.org/10.1007/978-3-662-08618-6_8
  16. Iwadare S, Shizuri Y, Sasaki K, and Hirata Y (1974) Isolation and structure of trichotomine and trichotomine G1. Tetrahedron 30, 4105-11. https://doi.org/10.1016/S0040-4020(01)97392-2
  17. Jung JE, Sin SM, Kim HM, Lee S, Choi K, Park KW et al. (2011) Screening of radical scavenging activity and gastric cancer prevention activity from Korean folk plants. Cancer Prev Res 16, 65-73.
  18. Kang SJ, Kim JH, and Joo GJ (2005) Isolation of antagonistic bacteria against Fusarium oxysporum and physicochemical properties of compost mixed with microbial formulation. Korean J Hort Sci Technol 23, 342-50.
  19. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, and Sahm DF (2002) Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46, 2540-5. https://doi.org/10.1128/AAC.46.8.2540-2545.2002
  20. Kato N, Shibayama S, Munakata K, and Katayama C (1971) Structure of the diterpene clerodendrin A. J Chem Soc D 24, 1632-3.
  21. Kawai K, Amano T, Nishida R, Kuwahara Y, and Fukami H (1998) Clerodendrins from Clerodendron trichotomum and their feeding stimulant activity for the turnip sawfly. Phytochemistry 49, 1975-80. https://doi.org/10.1016/S0031-9422(98)00431-2
  22. Kawai K, Nishida R, and Fukami H (1999) Clerodendrin I, a new neoclerodane diterpenoid from Clerodendron trichotomum. Biosci Biotechnol Biochem 63, 1795-7. https://doi.org/10.1271/bbb.63.1795
  23. Kawano N, Miura H, and Kamo Y (1967) Studies on the components of Clerodendron trichotomum Thumb. II. Yakugaku Zasshi 87, 1146-8. https://doi.org/10.1248/yakushi1947.87.9_1146
  24. Kim HJ, Woo ER, Shin CG, Hwang DJ, Park H, and Lee YS (2001) HIV-1 integrase inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. Arch Pharm Res 24, 286-91. https://doi.org/10.1007/BF02975093
  25. Landgren M, Oden H, Kühn I, Osterlund A, and Kahlmeter G (2005) Diversity among 2481 Escherichia coli from women with communityacquired lower urinary tract infections in 17 countries. J Antimicrob Agents Chemother 55, 928-37. https://doi.org/10.1093/jac/dki122
  26. Lee CK, Kim HK, Moon KH, and Shin KH (1998) Screening and isolation of antibiotic resistance inhibitors from herb materials-resistance inhibition of volatile components of Korean aromatic herbs. Arch Pharm Res 21, 62-6. https://doi.org/10.1007/BF03216754
  27. Lee WT (1996) In Lineamenta Florae Koreae (1st ed.), pp. 934-5, Academic Books, Korea.
  28. Lima-Júnior RCP, Sousa DIM, Brito GAC, Cunha GM, Chaves MH, Rao VSN et al. (2007) Modulation of acute visceral nociception and bladder inflammation by plant triterpene, alpha, beta-amyrin in a mouse model of cystitis: role of tachykinin NK(1)-receptors, and $K^{+}$ ATP channels. Inflamm Res 56, 487-94. https://doi.org/10.1007/s00011-007-7023-4
  29. Morita N, Arisaw, M, Ozawa H, Chen CS, and Kan WS (1977) Clerodendroside, a new glycoside from the leaves of Clerodendron trichotomum Thunb. var. fargesii Rehd. (Verbenaceae). Yakugaku Zasshi 97, 976-9. https://doi.org/10.1248/yakushi1947.97.9_976
  30. Okigawa M, Hatanaka H, Kawano N, Matsunaqa I, and Tamura Z (1970) A newglycoside, acacetin-7-glucurono-(12)-glucuronide fromthe leaves of Clerodendron trichotomum. Tetrahedron Lett 33, 2935-6.
  31. Oliveira FA, Chaves MH, Almeida FR, Lima RC Jr, Silva RM, Maia JL et al. (2005) Protective effect of alpha- and beta-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice. J Ethnopharmacol 98, 103- 8. https://doi.org/10.1016/j.jep.2005.01.036
  32. Oliveira FA, Lima-Junior RC, Cordeiro WM, Vieira-Júnior GM, Chaves MH, Almeida FR et al. (2004b) Pentacyclic triterpenoids, alpha, beta-amyrins, suppress the scratching behavior in a mouse model of pruritus. Pharmacol Biochem Behav 78, 719-25. https://doi.org/10.1016/j.pbb.2004.05.013
  33. Oliveira FA, Vieira-Junior GM, Chaves MH, Almeida FR, Santos KA, Martins FS et al. (2004a) Gastroprotective effect of the mixture of alphaand beta-amyrin from Protium heptaphyllum: role of capsaicin-sensitive primary afferent neurons. Planta Med 70, 780-2. https://doi.org/10.1055/s-2004-827212
  34. Pech GG, Brito WF, Mena GJ, and Quijano L (2002) Constituents of Acacia cedilloi and Acacia gaumeri. Revised structure and complete NMR assignments of resinone. Z Naturforsch 57c, 773-6.
  35. Rojas R, Bustamante B, Bauer J, Fernández I, Albán J, and Lock O (2003) Antimicrobial activity of selected Peruvian medicinal plants. J Ethnopharmacol 88, 199-204. https://doi.org/10.1016/S0378-8741(03)00212-5
  36. Sakurai A and Kato T (1983) A new glycoside, kusaginin isolated from Clerodendron trichotomum. Bull Chem Soc Jpn 56, 1573-4. https://doi.org/10.1246/bcsj.56.1573
  37. Sonohara R, Muramatsu N, Ohshima H, and Kondo T (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 55, 273-7. https://doi.org/10.1016/0301-4622(95)00004-H
  38. Westh H, Zinn CS, and Rosdahl VT (2004) An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb Drug Resist 10, 169- 76. https://doi.org/10.1089/1076629041310019

Cited by

  1. Biotransformations of diterpenoids and triterpenoids: a review vol.16, pp.1, 2014, https://doi.org/10.1080/10286020.2013.846908
  2. Growth-inhibiting effects and chemical composition of essential oils extracted from Platycladus orientalis leaves and stems toward human intestinal bacteria vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0056-5
  3. Diverse Terpenoids from the Leaves of Clerodendrum trichotomum vol.51, pp.5, 2015, https://doi.org/10.1007/s10600-015-1477-3
  4. Unusual chemical composition of a Mexican propolis collected in Quintana Roo, Mexico vol.54, pp.4, 2015, https://doi.org/10.1080/00218839.2016.1169651
  5. Scientific validation of medicinal plants used by Yakkha community of Chanuwa VDC, Dhankuta, Nepal vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-1821-5
  6. Abietane Diterpenoids from Clerodendrum trichotomum and Correction of NMR Data of Villosin C and B vol.9, pp.7, 2012, https://doi.org/10.1177/1934578x1400900706
  7. Abietane diterpenoids and other constituents from Clerodendrum trichotomum vol.56, pp.None, 2012, https://doi.org/10.1016/j.bse.2014.06.002
  8. 취오동(臭梧桐)의 국내,외 연구동향과 『본초학』, 한국표준질병사인분류의 상관관계에 대한 체계적 문헌고찰 vol.31, pp.6, 2012, https://doi.org/10.6116/kjh.2016.31.6.53.
  9. Clerodendrum viscosum: a critical review on phytochemistry, pharmacology, quality assurance, and safety data vol.30, pp.12, 2021, https://doi.org/10.1007/s00044-021-02804-8