A Study on Interactions of Competitive Promotions Between the New and Used Cars

신차와 중고차간 프로모션의 상호작용에 대한 연구

  • Chang, Kwangpil (College of Business Administration, University of Seoul)
  • 장광필 (서울시립대학교 경영대학)
  • Received : 2012.02.20
  • Accepted : 2012.03.20
  • Published : 2012.04.30

Abstract

In a market where new and used cars are competing with each other, we would run the risk of obtaining biased estimates of cross elasticity between them if we focus on only new cars or on only used cars. Unfortunately, most of previous studies on the automobile industry have focused on only new car models without taking into account the effect of used cars' pricing policy on new cars' market shares and vice versa, resulting in inadequate prediction of reactive pricing in response to competitors' rebate or price discount. However, there are some exceptions. Purohit (1992) and Sullivan (1990) looked into both new and used car markets at the same time to examine the effect of new car model launching on the used car prices. But their studies have some limitations in that they employed the average used car prices reported in NADA Used Car Guide instead of actual transaction prices. Some of the conflicting results may be due to this problem in the data. Park (1998) recognized this problem and used the actual prices in his study. His work is notable in that he investigated the qualitative effect of new car model launching on the pricing policy of the used car in terms of reinforcement of brand equity. The current work also used the actual price like Park (1998) but the quantitative aspect of competitive price promotion between new and used cars of the same model was explored. In this study, I develop a model that assumes that the cross elasticity between new and used cars of the same model is higher than those amongst new cars and used cars of the different model. Specifically, I apply the nested logit model that assumes the car model choice at the first stage and the choice between new and used cars at the second stage. This proposed model is compared to the IIA (Independence of Irrelevant Alternatives) model that assumes that there is no decision hierarchy but that new and used cars of the different model are all substitutable at the first stage. The data for this study are drawn from Power Information Network (PIN), an affiliate of J.D. Power and Associates. PIN collects sales transaction data from a sample of dealerships in the major metropolitan areas in the U.S. These are retail transactions, i.e., sales or leases to final consumers, excluding fleet sales and including both new car and used car sales. Each observation in the PIN database contains the transaction date, the manufacturer, model year, make, model, trim and other car information, the transaction price, consumer rebates, the interest rate, term, amount financed (when the vehicle is financed or leased), etc. I used data for the compact cars sold during the period January 2009- June 2009. The new and used cars of the top nine selling models are included in the study: Mazda 3, Honda Civic, Chevrolet Cobalt, Toyota Corolla, Hyundai Elantra, Ford Focus, Volkswagen Jetta, Nissan Sentra, and Kia Spectra. These models in the study accounted for 87% of category unit sales. Empirical application of the nested logit model showed that the proposed model outperformed the IIA (Independence of Irrelevant Alternatives) model in both calibration and holdout samples. The other comparison model that assumes choice between new and used cars at the first stage and car model choice at the second stage turned out to be mis-specfied since the dissimilarity parameter (i.e., inclusive or categroy value parameter) was estimated to be greater than 1. Post hoc analysis based on estimated parameters was conducted employing the modified Lanczo's iterative method. This method is intuitively appealing. For example, suppose a new car offers a certain amount of rebate and gains market share at first. In response to this rebate, a used car of the same model keeps decreasing price until it regains the lost market share to maintain the status quo. The new car settle down to a lowered market share due to the used car's reaction. The method enables us to find the amount of price discount to main the status quo and equilibrium market shares of the new and used cars. In the first simulation, I used Jetta as a focal brand to see how its new and used cars set prices, rebates or APR interactively assuming that reactive cars respond to price promotion to maintain the status quo. The simulation results showed that the IIA model underestimates cross elasticities, resulting in suggesting less aggressive used car price discount in response to new cars' rebate than the proposed nested logit model. In the second simulation, I used Elantra to reconfirm the result for Jetta and came to the same conclusion. In the third simulation, I had Corolla offer $1,000 rebate to see what could be the best response for Elantra's new and used cars. Interestingly, Elantra's used car could maintain the status quo by offering lower price discount ($160) than the new car ($205). In the future research, we might want to explore the plausibility of the alternative nested logit model. For example, the NUB model that assumes choice between new and used cars at the first stage and brand choice at the second stage could be a possibility even though it was rejected in the current study because of mis-specification (A dissimilarity parameter turned out to be higher than 1). The NUB model may have been rejected due to true mis-specification or data structure transmitted from a typical car dealership. In a typical car dealership, both new and used cars of the same model are displayed. Because of this fact, the BNU model that assumes brand choice at the first stage and choice between new and used cars at the second stage may have been favored in the current study since customers first choose a dealership (brand) then choose between new and used cars given this market environment. However, suppose there are dealerships that carry both new and used cars of various models, then the NUB model might fit the data as well as the BNU model. Which model is a better description of the data is an empirical question. In addition, it would be interesting to test a probabilistic mixture model of the BNU and NUB on a new data set.

신차와 중고차가 함께 경쟁하는 시장에서 신차의 경쟁만을 모형화한다면 가격이나 기타 프로모션 탄력성의 추정이 왜곡될 수 있다. 그러나 자동차 시장을 연구대상으로 한 선행연구의 대부분이 신차 시장의 경쟁에만 관심을 기울였던 바, 합리적인 가격결정이나 프로모션 기획에 도움을 주기에 미흡한 점이 있었다. 본 연구는 신차의 가격결정 및 프로모션 기획이 향후 중고차 시장을 통해 리바운드되어 신차 매출에 다시 영향을 미친다는 점을 반영하여 모형을 설정하였다. 즉, 서로 다른 신차간의 (혹은 서로 다른 중고차간의) 교차탄력성보다, 동일 모델의 신차와 중고차간의 교차탄력성이 높다는 가정하에 모형을 설정하였다. 방법론적으로는 네스티드 로짓(Nested Logit) 모형을 설정하여 소비자의 자동차 선택은 단계적으로 이루어진다고 가정하였다. 즉, 1단계에서 자동차 모델을 선택하고, 모델이 정해지면 2단계에서 신차와 중고차 중 선택하는 구조를 가정하였다 실증분석은 미국 전역에서 2009년 1월부터 2009년 6월까지 판매된 모든 컴팩트 카 모델 중에서 시장점유율 상위 9개 모델의 신차와 중고차를 대상으로 하였다. 실증분석을 통하여 비교 대상 모형보다 제안된 모형이 모형 적합도 측면에서 우월하고 예측타당성도 높다는 것을 보여주었다. 제안된 모형으로 부터 추정된 모수를 사용하여 몇 가지 시나리오를 상정하여 시뮬레이션을 실시한 결과, 신차(중고차)가 점유율을 높이고자 리베이트를 실시할 경우 중고차(신차)는 현재의 시장점유율을 유지하기 위해 대응 가격할인을 실시하게 되는데 할인 폭은 반대의 경우에 비해 높다는(낮다는)점을 확인하였다. 또한 시뮬레이션 결과가 시사하는 바는 신차와 중고차가 함께 경쟁하는 시장에서 IIA(Independence of Irrelevant Alternatives)모형을 적용할 경우 동일모델의 신차와 중고차간의 교차 탄력성을 과소평가하게 되어 현상유지를 위한 가격할인을 실시할 경우 적정한 수준이하로 하게 된다는 것이다.

Keywords

Acknowledgement

이 논문은 2010년도 서울시립대학교 교내학술연구비에 의하여 연구되었음