DOI QR코드

DOI QR Code

Development of an Experimental Method for Understanding the Effects of the Coriolis Force on the Typhoon Genesis and its Movement

전향력이 태풍 발생 및 이동에 미치는 영향을 이해할 수 있는 실험 방법 개발

  • Wie, Jieun (Devision of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Jang, Swunghwan (Devision of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Moon, Byungkwon (Devision of Science Education/Institute of Science Education, Chonbuk National University)
  • 위지은 (전북대학교 과학교육학부/과학교육연구소) ;
  • 장승환 (전북대학교 과학교육학부/과학교육연구소) ;
  • 문병권 (전북대학교 과학교육학부/과학교육연구소)
  • Received : 2012.08.23
  • Accepted : 2012.09.24
  • Published : 2012.10.31

Abstract

A simple experimental method was developed to help students understand the effect of the Coriolis force on typhoon genesis and movement. It consists of rotating tanks with and without a sloping bottom, and a small stirrer to produce cyclonic typhoon-like vortices by locally stirring the water. Vortices were able to last for more than 3 minutes without dissipation in the rotating tank. However, vortices were hardly maintained without rotation, and would rather disappear as soon as the stirrer stopped mixing. Since the dynamical properties of the rotating water are similar to those of the atmosphere influenced by the Coriolis force, the experiments show that the Coriolis force is indispensable to the typhoon genesis. When the tank had both the sloping bottom and rotation, vortices would move in a particular direction. Considering the topographical beta effect, this result indicates that typhoons are drifted not only by the steering wind but also by the meridional gradient of the Coriolis force. The methodology developed in this study, would be useful for both students and teachers to better the relationship between the Coriolis force and the typhoon genesis.

태풍 발생과 이동에 미치는 전향력의 영향을 살펴보는데 활용할 수 있는 실험 방법을 개발하였다. 실험 장치는 회전원판, 수조, 그리고 태풍과 유사한 모양의 소용돌이를 생성시키기 위한 발생기 등으로 구성되었다. 회전하는 원판에 놓인 수조에서 생성된 소용돌이는 그 형태가 수 분 동안 유지되었다. 반면에 회전이 없을 때는 소용돌이가 생성되기 어려웠고, 생성되더라도 곧 흩어졌다. 회전 유체의 역학적 특성은 전향력이 작용하는 대기와 유사하므로, 앞의 두 실험을 통해 태풍이 발생되기 위해서는 반드시 전향력이 필요함을 알 수 있었다. 또한 경사진 바닥을 갖는 수조 속의 소용돌이는 일정한 방향으로 이동하였다. 지형적 베타 효과를 고려하여, 우리는 바람 효과뿐만 아니라 전향력의 남북방향의 변화가 태풍의 이동에 중요한 영향을 줄 수 있음을 알았다. 이 연구에서 개발한 실험 방법은 학생들이 전향력과 태풍의 관계를 이해하는데 유용하게 사용될 것으로 기대한다.

Keywords

References

  1. 교육인적자원부, 1997, 과학과 교육과정. 서울, 90 p.
  2. 교육인적자원부, 2007, 과학과 교육과정. 서울, 83 p.
  3. 김은주, 이상법, 윤일희, 이효녕, 2009, 전향력에 의한 현상을 효과적으로 교육시킬 수 있는 실험 장치의 개발. 한국지구과학회지, 30, 787-798.
  4. 김주혜, 추교명, 김백조, 원성희, 권혁조, 2007, 이동격자태풍모델을 이용한 2006년 태풍의 진로 및 강도 예측성능 평가. 한국기상학회 대기지, 17, 207-216.
  5. 김희수, 정남식, 신동원, 박정웅, 이정식, 한홍렬, 박용선, 2002, 지구과학I. 천재교육, 서울, 247 p.
  6. 백종수, 백종진, 1999, 초기 소용돌이 구조, 대칭 및 비대칭 순환, 그리고 순압 태풍 운동. Asia-Pacific Journal of Atmospheric Sciences, 35, 201-214.
  7. 윤순창, 이갑복, 1990, 순압 대기에서의 태풍의 이동 성향 에 관한 연구. Asia-Pacific Journal of Atmospheric Sciences, 26, 25-37.
  8. 이문원, 전성용, 권석민, 진만식, 신석주, 임부철, 2011, 지구과학I. 금성출판사, 서울, 283.
  9. 이조한, 이동규, 전종갑, 1999, 초기화된 태풍의 구조 및 발달의 연구. Asia-Pacific Journal of Atmospheric Sciences, 35, 405-420.
  10. 이태욱, 박수인, 김완섭, 강석철, 이용준, 이혜경, 장헌영, 김병노, 2011a, 지구과학I. 교학사, 서울, 303 p.
  11. 이태욱, 박수인, 김완섭, 강석철, 이용준, 이혜경, 장헌영, 김병노, 2011b, 지구과학II. 교학사, 서울, 303 p.
  12. 장승환, 박효진, 조규성, 문병권, 2011, 전향력 발생 원리를 고등학생들에게 설명하기 위한 새로운 방법. 한국지구과학회지, 32, 73-83.
  13. 장승환, 신정선, 문병권, 2010, 서안경계류 역학을 이해하기 위한 실험 장치 및 방법 개발. 한국지구과학회지, 31, 88-94.
  14. 정완호, 김웅태, 신미영, 고현덕, 권혁빈, 김낙현, 김희동, 박종석, 임태훈, 송현미, 윤용, 김영준, 2011, 과학. 교학사, 서울, 443 p.
  15. 조희형, 최경희, 2005, 과학교육의 이론과 실제. 교육과학사, 서울, 669 p.
  16. 최기선, 김태룡, 2011, 한반도에 영향을 주는 태풍의 접근 진단 지수 개발. 한국지구과학회지, 32, 347-359.
  17. 최기선, 차유미, 김태룡, 2012, 한반도에 상륙한 태풍 빈도수의 십년간 변동 특성. 한국지구과학회지, 33, 49-58.
  18. 최변각, 이해신, 추병수, 문병권, 소영무, 이지은, 이정은, 조명아, 2011a, 지구과학I. 천재교육, 서울, 319 p.
  19. 최변각, 이해신, 추병수, 문병권, 소영무, 이지은, 이정은, 조명아, 2011b, 지구과학II. 천재교육, 서울, 351 p.
  20. 최진호, 2004, 회전 원반을 이용한 전향력 실험 방법 개선. 한국교원대학교 교육학석사학위논문, 108 p.
  21. 한국기상학회, 2003, 대기과학개론. 시그마프레스, 서울, 405 p.
  22. 한국지구과학회, 1998, 지구과학개론. 교학연구사, 서울, 818 p.
  23. 한지영, 백종진, 2006, 대기 대순환 모형과 해수면 온도 관측 자료를 이용한 태풍 활동의 계절 예측 가능성. 한국지구과학회지, 27, 653-658.
  24. Adem, J., 1956, A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus, 3, 364-372.
  25. Carnevale, G.F., Briscolini, M., Kloosterziel, R.C., and Vallis, G.K., 1997, Three dimensionally perturbed vortex tubes in an rotating flow. Journal of Fluid Mechanics, 341, 127-163. https://doi.org/10.1017/S0022112097005430
  26. Carnevale, G.F., McWilliams, J.C., Pomeau, Y., Weiss, J.B., and Young, W.R., 1991, Evolution of vortex statistics in two-dimensional turbulence. Physical Review Letters, 66, 2735-2737. https://doi.org/10.1103/PhysRevLett.66.2735
  27. Cha, E.J., Masahide, K., Lee, E.J., Jhun, J.G., 2007, The recent increase in the heavy rainfall events in august over the Korean Peninsula. Journal of the Korean Earth Science Society, 28, 585-597. https://doi.org/10.5467/JKESS.2007.28.5.585
  28. Chan, J.C.L. and Williams, R.T., 1987, Analytical and numerical studies of the Beta-Effect in tropical cyclone motion, part I: Zero mean flow. Journal of the Atmospheric Sciences, 44, 1257-1265. https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2
  29. Eindhoven University of Technologye, 2012, http://web.phys.tue.nl/nl/de_faculteit/capaciteitsgroepen/transportfysica/fluid_dynamics_lab/research/vortex_dynamics/topogr/ (검색일: 2012. 9. 8.)
  30. Fiorino, M. and Elsberry, R.L., 1989, Contribution to tropical cyclone motion by small, medium and large scales in the initial vortex. Monthly Weather Review, 117, 721-727. https://doi.org/10.1175/1520-0493(1989)117<0721:CTTCMB>2.0.CO;2
  31. Holton, J.R., 2004, An introduction to dynamic meteorology. Elsevier Academic Press, CA, USA, 535 p.
  32. Hopfinger, E.J. and Van Heijst, G.J.F., 1993, Vortices in rotating fluids. Annual Review of Fluid Mechanics, 25, 241-289. https://doi.org/10.1146/annurev.fl.25.010193.001325
  33. Liang, X. and Chan, J.C.L., 2005, The effects of the full Coriolis Force on the structure and motion of a tropical cyclone, part I: Effects due to vertical motion. Journal of the Atmospheric Sciences, 62, 3825-3830. https://doi.org/10.1175/JAS3545.1
  34. Orlandi, P., 2000, Fluid flow phenomena: A numerical toolkit (fluid mechanics and Its applications). Kluwer Academic Publisher, Dordrechi, Netherlands, 356 p.
  35. Pedlosky, J., 1987, Geophysical fluid dynamics. Springer- Verlag, NY, USA, 710 p.
  36. Rossby, C.G., 1948, On displacements and intensity changes of atmospheric vortices. Journal of Marine Research, 7, 175-187.
  37. Rossby, C.G. and Collaborators, 1939, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. Journal of Marine Research, 38-55.
  38. Van Heijst, G.J.F., 1994, Topography effects on vortices in a rotating fluid. An International Journal of Theoretical and Applied Mechanics, 29, 431-451.

Cited by

  1. Patterns of Barotropic Vortex in a Rotating Fluid and the Structural Rotation of Tripolar Vortex vol.34, pp.3, 2013, https://doi.org/10.5467/JKESS.2013.34.3.189