DOI QR코드

DOI QR Code

CT Scan Findings of Rabbit Brain Infection Model and Changes in Hounsfield Unit of Arterial Blood after Injecting Contrast Medium

토끼 뇌감염 모델의 CT 소견과 조영제 주입 후 동맥혈의 Hounsfield Unit의 변화

  • 하본철 (중앙대학교 의과대학 의학과/중앙대학교병원 영상의학과) ;
  • 곽병국 (중앙대학교 의과대학 의학과/중앙대학교병원 영상의학과) ;
  • 정지성 (중앙대학교 의과대학 의학과/중앙대학교병원 임상의학연구소)
  • Received : 2012.07.05
  • Accepted : 2011.08.20
  • Published : 2012.09.28

Abstract

This paper explores CT findings of a rabbit brain infection model injected with Escherichia coli and investigates the changes in Hounsfield unit (HU) of arterial blood over time. The brain infection model was produced by injecting E. coli $1{\times}10^7$ CFU/ml, 0.1 ml through the burr hole in the calvarium; 2~3 mm in depth from the dura mater, and contrast-enhanced CT, dynamic CT and arterial blood CT images were gained. It was found that various brain infections such as brain abscess, ventriculitis and meningitis. The CT image of brain abscess showed a typical pattern which the peripheral area was strongly contrast-enhanced while the center was weakly contrast-enhanced. The CT image of ventriculitis showed a strong contrast-enhancement along the lateral ventricle wall, and the CT image of meningitis showed a strong contrast-enhancement in the area between the telencephalon and the diencephalon. In dynamic CT images, the HU value of the infection core before injecting contrast medium was $31.01{\pm}3.55$. By 10 minutes after the injection, the value increased gradually to $40.36{\pm}3.76$. The HU value in the areas of the marginal rim where was hyper-enhanced showed $47.23{\pm}3.12$ before contrast injection, and it increased to $63.59{\pm}3.31$ about 45 seconds after the injection. In addition, the HU value of the normal brain tissue opposite to the E. coli. injected brain was $39.01{\pm}3.24$ before the injection, but after the contrast injection, the value increased to $49.01{\pm}4.29$ in about 30 seconds, and then it showed a gradual decline. In the arterial blood CT, the HU value before the contrast injection was $87.78{\pm}6.88$, and it increased dramatically between 10 to 30 seconds until it reached a maximum value of $749.13{\pm}98.48$. Then it fell sharply to $467.85{\pm}62.98$ between 30 seconds to 45 seconds and reached a plateau by 60 seconds. Later, the value showed a steady decrease and indicated $188.28{\pm}25.03$ at 20 minutes. Through this experiment, it was demonstrated that the brain infection model can be produced by injecting E. coli., and the characteristic of the infection model can be well observed with contrast-enhanced CT scan. The dynamic CT scan showed that the center of the infection was gradually contrast-enhanced, whereases the peripheral area was rapidly contrast-enhanced and then slowly decreased. As for arterial blood, it increased significantly between 10 seconds to 30 seconds after the contrast medium injection and decreased gradually after reaching a plateau.

토끼 뇌에 대장균을 주입하여 CT 소견을 알아보고, 시간에 따른 동맥혈의 하운스필드 값의 변화를 알아보고자 하였다. 토끼 두개관에 천두공(burr hole)을 뚫고 2~3 mm 깊이에 대장균 $1{\times}10^7$ CFU/ml, 0.1 ml을 주입하여 뇌염증 모델을 제작하고, 조영 증강 CT와 동적 CT, 그리고 동맥혈의 CT영상을 얻었다.조영 증강 CT에서 뇌농양, 뇌실염 그리고 뇌막염등 다양한 뇌염증 소견이 보였다. 뇌농양은 중앙부가 거의 조영되지 않고 주변부가 강하게 조영되는 전형적인 양상을 보였고, 뇌실염은 측뇌실 벽을 따라 강하게 조영되는 소견을 보였으며, 뇌막염은 종뇌와 간뇌의 접히는 부위 뇌막이 강하게 조영되었다. 동적 CT영상에서 염증 중앙부의 조영제 주입 전 HU 값은 $31.01{\pm}3.55$였고, 주입 후 10분까지 $40.36{\pm}3.76$으로 서서히 증가하였다. 그리고 염증 가장자리구역에서 HU 값은 조영제 주입 전에 $47.23{\pm}3.12$였고, 조영제 주입 후 약 45초에 $63.59{\pm}3.31$로 가장 많이 증가 하였으나 이후 20분까지 약간 떨어졌다. 또한 균 주입 반대쪽 정상 뇌조직에서 측정한 HU 값은 조영제 주입 전에 $39.01{\pm}3.24$이었고, 조영제 주입 후 약 30초에 $49.01{\pm}4.29$로 가장 많이 조영되었고, 이후 서서히 낮아졌다. 동맥 혈액 CT에서 조영제 주입 전 HU 값은 $87.78{\pm}6.88$이었고, 조영제 주입 후 10초부터 30초까지 급격히 증가하여 $749.13{\pm}98.48$로 최대값을 보이고, 30초부터 45초까지 $467.85{\pm}62.98$로 급격히 감소하며, 45초에서 60초까지는 정체기(plateau)를 보였으며, 이후 20분까지 $188.28{\pm}25.03$으로 감소되었다. 결과적으로 대장균으로 뇌염증 모델을 만들 수 있고, 조영 증강 CT를 통하여 뇌염증의 특징적인 소견을 잘 알 수 있었으며, 동적 CT를 통해 염증 중앙부와 가장자리구역의 조영 양상을 알 수 있고, 동맥혈은 조영제 주입 후 10초부터 30초 까지 급격히 증가하다 정체기를 거쳐 서서히 감소하는 것으로 나타났다.

Keywords

References

  1. J. D. Beckham and K. L. Tyler, "Neuro-intensive care of patients with acute CNS infections," Neurotherapeutics, Vol.9, No.1, pp.124-138, 2012. https://doi.org/10.1007/s13311-011-0086-5
  2. T. E. Ratnaike, S. Das, B. A. Gregson, and A. D. Mendelow, "A review of brain abscess surgical treatment-78 years: aspiration versus excision," World Neurosurg, Vol.76, No.5, pp.431-436, 2011. https://doi.org/10.1016/j.wneu.2011.03.048
  3. G. P. DeMuri and E. R. Wald, "Complications of acute bacterial sinusitis in children," Pediatr Infect Dis J, Vol.30, No.8, pp.701-702, 2011. https://doi.org/10.1097/INF.0b013e318228555d
  4. G. E, Mathisen and J, Patrick Johnson, "Brain Abscess," Clinical Infectious Diseases, Vol.25, No.4, pp.763-779, 1997. https://doi.org/10.1086/515541
  5. C. Ostergaard, C. Brandt, H. B. Konradsen, and S. Samuelsson, "Differences in survival, brain damage, and cerebrospinal fluid cytokine kinetics due to meningitis caused by 3 different Streptococcus pneumoniae serotypes: evaluation in humans and in 2 experimental models," J Infect Dis, Vol.190, No.7, pp.1212-1220, 2004. https://doi.org/10.1086/423852
  6. M. G. Täuber, R. A. Brooks-Fournier, and M. A. Sande, "Experimental models of CNS infections. Contributions to concepts of disease and treatment," Neurol Clin, Vol.4, No.1, pp.249-264, 1986.
  7. W. M. Scheld, J. P. Brodeur, P. A. Foresman, J. C. Gratz, and G. T. Rodeheaver, "Comparative evaluation of aztreonam in therapy for experimental bacterial meningitis and cerebritis," Rev Infect Dis, Vol.7, No.4, pp.635-647, 1985. https://doi.org/10.1093/clinids/7.5.635
  8. W. M. Scheld, J. P. Brodeur, J. C. Gratz, P. Foresman, and G. Rodeheaver, "Evaluation of aztreonam in experimental bacterial meningitis and cerebritis," Antimicrob Agents Chemother, Vol.24, No.5, pp.682-688, 1983. https://doi.org/10.1128/AAC.24.5.682
  9. 이채혁, 임근호, 이정희, 권병덕, "흰쥐 뇌농양 모델에서 농양 형성단계에 따른 양자자기공명 분광상의 변화," J Korean Neurosurg Soc, Vol.28, pp.1429-1439, 1999.
  10. M. R. Machein, J. Kullmer, B. L. Fiebich, K. H. Plate, and P. C. Warnke, "Vascular endothelial growth factor expression, vascular volume, and, capillary permeability in human brain tumors," Neurosurgery, Vol.44, No.4, pp.732-740, 1999. https://doi.org/10.1097/00006123-199904000-00022
  11. K. Lee, K. Yamada, R. Tsuneda, M. Kishimoto, J. Shimizu, Y. Kobayashi, H. Furuoka, T. Matsui, N. Sasaki, M. Ishii, H. Inokuma, T. Iwasaki, and Y. Miyake, "Clinical experience of using multidetector-row CT for the diagnosis of disorders in cattle," Vet Rec, Vol.7, No.19, pp.559-562, 2009.
  12. S. El-Khodery, K. Yamada, D. Aoki, K. Kamio, M. Kishimoto, J. Shimizu, Y. Kobayashi, M. Ishii, H. Inokuma, S. Yamauchi, and T. Matsui, "Brain abscess in a Japanese black calf: utility of computed tomography (CT)," J Vet Med Sci, Vol.70, No.7, pp.727-730, 2008. https://doi.org/10.1292/jvms.70.727
  13. J. Arbizu, P. D. Domínguez, R. Diez-Valle, C. Vigil , R. García-Eulate, J. L. Zubieta, and J. A. Richter, "Neuroimaging in brain tumors," Rev Esp Med Nucl, Vol.30, No.1, pp.47-65, 2011. https://doi.org/10.1016/j.remn.2010.11.001
  14. O. Kastrup, J. Wanke, and M. Maschke, "Neuroimaging of infections," NeuroRx, Vol.2, No.2, pp.324-332, 2005. https://doi.org/10.1602/neurorx.2.2.324
  15. 하본철, 임청환, "흰쥐 광 혈전 뇌경색 모델에서 줄기세포 추적을 위한 자화강조영상", 한국콘텐츠학회논문지, 제10권, 제8호, pp.249-256, 2010. https://doi.org/10.5392/JKCA.2010.10.8.249
  16. 이상호, 임청환, 정홍량, 한범희, 모은희, 채규윤, "마이크로 CT를 이용한 BALB/C(흰쥐) 간문맥의 미세혈관 조영 영상", 한국콘텐츠학회논문지, 제10권, 제9호, pp.259-266, 2010. https://doi.org/10.5392/JKCA.2010.10.9.259
  17. D. R. Groothuis, F. J. Vriesendorp, B. Kupfer, P. C. Warnke, G. D. Lapin, A. Kuruvilla, N. A. Vick, Mikhael MA, and Patlak CS, "Quantitative measurements of capillary transport in human brain tumors by computed tomography," Ann Neurol, Vol.30, No.4, pp.581-588, 1991. https://doi.org/10.1002/ana.410300411
  18. N. Luciani, A. Anselmi, F. Glieca, G. Lauria, R. de Geest, and G. Possati, "Femoral cannulation with long arterial cannula in aortic dissection," Ann Thorac Surg, Vol.93, No.2, pp.45-47, 2012. https://doi.org/10.1016/j.athoracsur.2011.10.018
  19. M. B. Fukui, R. L. Williams, and S. Mudigonda, "CT and MR imaging features of pyogenic ventriculitis," AJNR Am J Neuroradiol, Vol.22, No.8, pp.1510-1516, 2001.
  20. M. Blanchette and D. Fortin, "Blood-brain barrier disruption in the treatment of brain tumors," Methods Mol Biol, Vol.686, pp.447-463, 2011. https://doi.org/10.1007/978-1-60761-938-3_23
  21. V. Lakshmi, P. Umabala, K. Anuradha, K. Padmaja, C. Padmasree, A. Rajesh, and A. K. Purohit, "Microbiological spectrum of brain abscess at a tertiary care hospital in South India: 24-year data and review," Patholog Res Int, Vol.5, pp.831-839, 2011.
  22. R. D. Zimmerman and K. Weingarten, "Neuroimaging of cerebral abscess," Neuroimaging Clin N Amer, Vol.1, pp.1-16, 1991.
  23. D. R. Enzmann, R. H. Britt, and A. S. Yeager, "Experimental brain abscess evaluation: computed tomographic and neuropathologic correlation," Radiol, Vol.133, pp.113-122, 1979. https://doi.org/10.1148/133.1.113
  24. 임형택, 최우석, 김의종, 윤 엽, 곽정호, 나동규, " 자기공명영상에서 뇌 농양벽의 신호강도 : T2, 양자 농도 강조영상 및 FLAIR 영상을 중심으로", 대한방사선의학회지, Vol.42, pp.9-14, 2000.
  25. J. B. Nguyen, B. R. Black, M. M. Leimkuehler, V. Halder, J. V. Nguyen, and N. Ahktar, "Intracranial pyogenic abscess: imaging diagnosis utilizing recent advances in computed tomography and magnetic resonance imaging," Crit Rev Comput Tomogr, Vol.45, No.3, pp.181-224, 2004. https://doi.org/10.3109/10408370490478492