DOI QR코드

DOI QR Code

미생물에 의한 티탄철석의 물리적 특성 변화

Changes on Physical Property of Ilmenite due to Microorganism

  • 박영호 (조선대학교 에너지자원공학과) ;
  • 강대완 (조선대학교 에너지자원공학과) ;
  • 강성승 (조선대학교 에너지자원공학과)
  • 투고 : 2012.08.27
  • 심사 : 2012.09.18
  • 발행 : 2012.10.31

초록

미생물의 유무에 따른 티탄철석의 물성변화를 살펴보기 위하여 공극률, 흡수율, 종파속도 및 일축압축강도(UCS) 등의 실내시험을 수행하였다. 물리적 성질 변화는 미생물을 배양하지 않은 무기적 산화와 미생물을 배양한 생물학적 산화의 조건에서 배양기간에 따라 정량적으로 비교하였다. 그 결과, 배양기간 45일까지 측정된 pH는 무기적 산화의 경우 3.82-4.26 범위에 분포하는 반면, 생물학적 산화에 의한 pH 값은 2.20-2.57 범위 내에서 분포를 보였다. 미생물 유무와 배양기간에 따라 측정된 흡수율의 경우 무기적 산화는 최종단계에서 0.052%, 생물학적 산화는 0.073%로 나타났다. 공극률의 경우 무기적 산화는 최종단계에서 0.206%, 생물학적 산화는 0.281%를 보였다. 미생물에 의한 생물학적 산화는 무기적 산화에 비해 전반적으로 높은 값을 보였다. 종파속도는 배양기간이 지남에 따라 전반적으로 초기 평균값에 비해 낮은 속도 분포를 보였으며, 무기적 산화는 최종단계에서 1886 m/s로, 생물학적 산화는 최종단계에서 1410 m/s로 나타났다. 일축압축강도는 배양기간 따라 모든 시험편에서 감소를 보이며, 무기적 산화의 경우 최종단계에서 241.4 MPa로, 생물학적 산화의 경우 140.0 MPa로 나타났다. 결론적으로 배양기간에 따른 티탄철석의 물리적 특성 변화는 미생물에 의한 영향이 크게 작용하였음을 의미한다.

Laboratory tests for measuring absorption, porosity, P-wave velocity and uniaxial compressive strength (UCS) were performed to examine weathering characteristics of ilmenite by microorganism. Physical property changes were quantitatively estimated with comparing culture period on the condition of abiotic oxidation without microorganism and biooxidation with microorganism. As a result, the measured pH during 45 days was distributed in the range from 3.82 to 4.26, on the other hand, biooxidation showed the range from 2.20 to 2.57. The measured absorption according to microorganism and culture period represented 0.052% at final stage in the case of abiotic oxidation and 0.073% in the case of biooxidation. Porosity showed 0.206% at final stage in the case of abiotic oxidation and 0.281% in the case of biooxidation. In general, the values by biooxidation showed higher than that by abiotic oxidation. Change range of P-wave velocity with culture period showed that the measured value as 1410 m/s at final stage in the case of biooxidation was lower than 1886 m/s of that in the case of abiotic oxidation. The UCS was decreased with increasing culture period in all specimens and represented 241.1 MPa at final stage in the case of abiotic oxidation and 140.0 MPa in the case of bioxidation. In conclusion, it implies that influence of physical property on ilmenite by biooxidation related with microorganism was larger than that by abiotic oxidation.

키워드

참고문헌

  1. Bhatti, T. M., J. M. Bigham, L. Carlsin and O. H. Tuovien, 1993, Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans, Applied and Environmental Microbiology, 59, 6, 1984-1990.
  2. Bannett, J. C. and H. Tributsch, 1978, Bacterial leaching patterns on pyrite crystal surfaces, Journal of Bacterialogy, 134, 310-317.
  3. Brierley, J. A., 1978, Thermophilic iron-oxidizing bacteria found in copper leaching dumps, Applied and Environmental Microbiology, 36, 3, 523-525.
  4. Cho, T. J., S. B. Lee, T. J. Hwang and K. S. Won, 2009, Variations of mechanical properties of Hallasan trachyte with respect to the degree of weathering, Tunnel & Underground Space, Journal of Korean Society for Rock Mechanics, 19, 4, 287-303.
  5. Grishin, S. I., J. M. Bigham and O. H. Tuovinen, 1988, Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor, Applied and Environmental Microbiology, 54, 12, 3101-3106.
  6. ISRM, 1981, Rock characterization testing and monitoring, ISRM suggested methods, Editor E. T. Brown, The Commission on Testing Methods, International Society for Rock Mechanics, Pergamon Press, pp. 1-211.
  7. Jang, H. S., B. A. Jang, and J. S. Lee, 2004, Variations of Engineering geologycal characteristics of the cretaceous shale from the Pungam sedimentary basin in Kangwon-do due to frezzing-thawing, The journal of Engineering Geology, 14, 4, 401-416.
  8. Kang, S. S., J. I. Kim, Y. Obara and A. Hirata, 2011, Estimation of weathering characteristics of sandstone and andesite by freeze-thaw test, Tunnel & Underground Space, Journal of Korea society for Rock Mechnics, 21, 2, 145-150.
  9. KSRM, 2010, Rock standard method, KSRM suggested methods, Editor C. Park, The Commission on Testing Methods, Korean Society for Rock Mechanics, CIR Press, pp. 1-123.
  10. Lee, C.S., T. C. Cho, S. B. Lee and K. S. Won, 2007, A study of weathering characteristic of Baeknokdam trachyte in Jeju Island, The Journal of Engineering Geology, 17, 2, 235-251.
  11. Lee, C. W, Y. H. Park, B. J. Kim, J. S. Yoon, D. W. Wi, C. Y. Park and S. S. Kang, 2011, Variation of slake durability and P-wave velocity of pyrrhotite due to weathering of microorganism, Korean Society for Rock Mechanics, September 29-30, Pyeongchang, Kangwondo, Korea, 219-223.
  12. Ohmura, N., K. Kitamura and H. Saiki, 1993, Selective adhesion of Thiobacillus ferrooxidans to pyrite, Applied and Environmental Microbiology, 59, 12, 4044-4050.
  13. Park, C. Y., K. H. Jeong, B. J. Kim, H. Wi and Y. G. Lee, 2011, The corrosion and the enhance of bioleaching for galena by moderate thermophilic indigenous bacteria, Journal of The Korean Society for Geosystem Engineering, 48, 1, 11-24.
  14. Park, C. Y. and B. J. Kim, 2010, Characteristics of thermophilic bacteria and secondary materials attached on the pyrrhotite, Uljin, Journal of Mineralogical Society of Korea, 23, 315-329.
  15. Park, Y. H., C. W. Lee, T. Y. Na, D. W. Kang and S. S. Kang, 2012, Physical property variation of pyrrhotite by weathering of microorganism, The Korean Society of Engineering Geology, April 5-6, Busan, Korea, 185-189.
  16. Park, Y. J., K. H. You, K. Y. Yang, I. Woo, C. Park and W. K. Song, 2003, Weathering characteristics of granite by freeze-thaw cyclic test, Tunnel & Underground Space, Journal of Korea society for Rock Mechnics, 13, 3, 215-224.
  17. Roh, Y., J. M. Oh, Y. J. Seo and H. D. Jang, 2006, Microbial leaching of iron from magnetite. Tunnel & Underground Space, Journal of Mineralogy Society of Korea, 19, 4, 265-275
  18. Rojas-Chapana, J. A., M. Giersig and H. Tributsch, 1995, Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation, Archives of Microbiology, 163, 352-356. https://doi.org/10.1007/BF00404208
  19. Rojas-Chapana, J. A. and H. Tributsch, 2004, Interfacial activity and leaching patterns of Leptosprillum ferrooxidans on pyrite, FEMS Microbiology Ecology, 47, 19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  20. Sand, W., T. Gerke, A. Hallmann and A. Schippers, 1995, Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaluation of bacterial leaching, Applied Microbiology and Biotechnology, 43, 961-996. https://doi.org/10.1007/BF00166909
  21. Sand, W., T. Gehrke, P. G. Jozsa and A. Schippers, 2001, (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching, Hydrometallurgy, 59, 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  22. Shirihari, Kumar, R., K. S. Gandhi and KI. A. Natarajan, 1991, Rloe of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans, Applied Microbiology and Biotechnology, 36, 278-282. https://doi.org/10.1007/BF00164434
  23. Silverman, M. P., 1967, Mechanism of bacteria pyrite oxidation, Journal of Bacteriology, 6, 153-206.
  24. Song, W. K., I. Woo and B. C. Kim, 2009, Analysis on weathering characteristics of rocks in Dokdo by accelerated weathering test, Tunnel & Underground Space, Journal of Korea society for Rock Mechnics, 29, 4, 318-327.
  25. Tribusch, H., 2001, Direct versus indirect bioleaching, Hydrometallurgy, 59, 177-185. https://doi.org/10.1016/S0304-386X(00)00181-X
  26. Um, J. G., 2012, A study of weathering characteristics of cretaceous granite in Kimhae area due to Artificial weathering processes, Tunnel & Underground Space, Journal of Korea society for Rock Mechnics, 22, 1, 32-42.
  27. Um, J. G., I. Woo and H. J. Park, 2009, Variation of engineering geological characteristics of jurassic granite Wonju due to freeze-thaw weathering, Journal of Korea Society for Economic and Environmental Geology, 42, 4, 261-272.
  28. Woo, I. and H. J. Park, 2004, Classification of weathering for the granite and granite gneiss in Okcheon Belt-Jecheon. Geumsan.Gimcheon in Korea, Journal of Korea Society for Economic and Environmental Geology, 37, 3, 355-364.
  29. Woo, I., J. G. Um and H. J. Park, 2009, Variation of geomechenical characteristics of granite and orthogneiss in Wonju area due to accelerated artificial chemical weathering tests, Tunnel & Underground Space, Jouranl of Korean Society for Rock Mechanics, 19, 3, 213-225.
  30. Yu, J. Y., H. J. Koh and H. G. Song, 2011, Surface texture changes dueto the oxidation of pyrite by Acidithobacillus Ferrooxidans, Journal of Mineralogical Society of Korea, 24, 235-244. https://doi.org/10.9727/jmsk.2011.24.3.235
  31. Zhang, C., S. Liu, T. J. Phelps, D. R. Cole, j. Horita, S. M. Fortier, M. Elless and J. W. Valley, 1997, Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria, Geochimican et Cosmochimica Acta, 61, 21, 4621-4632. https://doi.org/10.1016/S0016-7037(97)00257-3