DOI QR코드

DOI QR Code

Numerical Study on Skin Burn Injury due to Flash Flame Exposure

돌발화염으로 인한 화상예측에 관한 수치해석적 연구

  • Received : 2012.03.26
  • Accepted : 2012.10.12
  • Published : 2012.10.31

Abstract

Many fire-fighters suffer from the burn injuries, and the severe burns are the most catastrophic injury a person can survive, resulting in pain, emotional stress, and tremendous economic costs. It is important to understand the physiology of burns for prevention from skin burns and a successful treatment of a burn patient. But a few researches have been presented because the complex physical phenomena of our inside body like non-linearity characteristics of human skin make them difficult. Thus in this study, thermal analyses of biological tissues exposed to a flash fire causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. The several previous models for skin thermo-physical properties were summarized, and the calculated values with those models of tissue injury were compared with the results obtained by the previous experiment for low heat flux conditions. The skin models with good agreement could be found. Also, the skin burn injury prediction results with the best model for high heat flux conditions by flash flame were suggested.

매년 많은 소방공무원들이 화재나 고온 조건 등에 노출되어 화상으로 고통 받고 있어, 화상 예측에 대한 연구를 통해 화상을 방지할 수 있는 방법의 개발이 매우 중요하다. 그러나 피부조직의 비선형성, 혈류에 의한 열전달 분석의 불확실성 등 인체 내부의 복잡한 물리현상으로 인해 화상에 대한 연구는 매우 부족한 것이 실정이며, 특히 국내의 경우는 이에 대한 연구가 전무한 실정이다. 본 연구에서는 특히 심각한 화상을 유발할 수 있는 돌발화염(80 kW/$m^2$ 이상의 고열 유속 조건)하에서의 2도 화상 발생에 대한 예측을 수행하였다. 생체 열전달 방정식(Bio-heat transfer)을 이용하여 지배방정식을 유도하였으며, 유한차분법(Finite Difference Method)을 활용하여 화상에 대한 예측을 수행하는 수치해석 접근법을 사용하였다. 기존의 여러 연구결과로부터 인체 피부의 열물성치를 정리하였고, 그것을 바탕으로 계산을 수행하였다. 기존의 낮은 열유속에 대한 화상 실험 결과와 예측 결과를 비교하여 가장 오차가 적은 열물성치 모델을 파악하였고, 그 결과를 바탕으로 고열유속의 돌발화염에서의 2도 화상발생 노출시간을 예측하여 제시하였다.

Keywords

References

  1. An Analysis on Current Conditions of Occupational Casualties of Firefighters 2008, NEMA (2008).
  2. Fire fighter Fatalities in the United States-NFPA (2009).
  3. D. C. Kim and D. S. Na, "Epidemiology of Burns in Korea", Journal of Korean Burn Society, Vol. 14, No. 1, pp. 6-11 (2011).
  4. American burn association. Burn incidence and treatment in the US: National health interview survey (2011).
  5. J. H. Veghte, "Fire Fighter's Protective Clothing: Design Criteria", 2nd Edition, Lion Apparel, Dayton OH (1988).
  6. J. R. Lawson, "Fire Fighter's Protective Clothing and Thermal Environments of Structural Fire Fighting", NISTIR 5804 (1996).
  7. J. M. Black, J. H. Hawks and A. M. Keene, "Medical- Surgical Nursing", 6th Edi., Elsevier (2001).
  8. www.childrenhospital.org.
  9. A. M. Stoll and M. A. Chianta, "Method and Rating System for Evaluation of Thermal Protection", Aerospace Medicine, Vol. 40, No. 11, pp. 1232-1238 (1969).
  10. H. H. Pennes, "Analysis of Tissue and Arterial Blood Flow Temperatures in the Resting Forearm", J. of Appl. Physiology, No. 1, pp. 93-122 (1948).
  11. F. C. Henriques and A. R. Moritz, "Studies of Thermal Injuries: The Conduction of Heat to and through Skin and the Temperatures Attained Therein. A Theoretical and Experimental Investigation", The American J. Pathology, Vol. 23, pp. 531-549 (1947)
  12. A. K. Mehta and F. C. Wong, "Measurement of Flammability and Burn Potential of Fabrics", MIT, Summary report DSR Project 73884 NSF (1973).
  13. J. A. Pearce, S. Thomsen, H. Vijverberg and T. McMurray, "Kinetics of Birefringence Changes in Thermally Coagulated Rat Skin Collagen", Proc. SPIE, pp. 180-186 (1993).
  14. J. D. Cutnell and K. W. Johnson, Physics, 4th Edition, John Wiley & Sons (1997).
  15. ASTM F 1930 "Standard Test Method for Evaluation of Flame Resistant Clothing for Protection Against Flash Fire Simulations Using an Instrumented Manikin", ASTM International (2008).
  16. D. A. Torvi and J. D. Dale. "A Finite Element Model of Skin Subjected to a Flash Fire", Journal of Biomechanical Engineering, Vol. 116, pp. 250-255 (1994). https://doi.org/10.1115/1.2895727
  17. F. Xu, T. J. Lu and K. A. Seffen, "Biothermomechanical behavior of Skin Tissue", Acta Mechanica Sinica, Vol. 24, No. 1, pp. 1-23 (2008). https://doi.org/10.1007/s10409-007-0128-8
  18. J. D. Dale, E. M. Crown, Ackerman, M. Y. E. Leung and K. B. Rigakis, "Instrumented Mannequin Evaluation of Thermal Protective Clothing", Performance of Protective Clothing: Fourth volume, ASTM STP 1133, American Society for Testing and Materials, Philadelphia (1992).

Cited by

  1. Study on the Thermal Protective Performance Measurements of Fire Fighter's Protective Clothing for Low Level Radiant Heat Exposures vol.28, pp.2, 2014, https://doi.org/10.7731/KIFSE.2014.28.2.001
  2. A Study Symptoms by Types of Burn Patients in Pre-hospital Stage vol.29, pp.4, 2015, https://doi.org/10.7731/KIFSE.2015.29.4.095
  3. Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries vol.30, pp.3, 2016, https://doi.org/10.7731/KIFSE.2016.30.3.016