Inhibitory Effects of Bupleuri Radix on ox-LDL induced Foam Cell Formation

시호 추출물의 oxLDL 유도 Foam Cell 형성 억제 작용

  • Lee, Hye-Jin (Department of Preventive Medicine, College of Oriental Medicine, Gachon University) ;
  • Bae, Ho-Sung (Department of Preventive Medicine, College of Oriental Medicine, Gachon University) ;
  • Hwang, Gwi-Seo (Department of Preventive Medicine, College of Oriental Medicine, Gachon University)
  • 이혜진 (가천대학교 한의과대학 예방의학교실) ;
  • 배호성 (가천대학교 한의과대학 예방의학교실) ;
  • 황귀서 (가천대학교 한의과대학 예방의학교실)
  • Received : 2012.07.24
  • Accepted : 2012.08.22
  • Published : 2012.08.31

Abstract

The oxidative modification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis. Oxidized LDL(oxLDL) is captured into macrophage and stimulates to form macrophage foam cell. And it can induce an inflammation and smooth muscle proliferation in atherosclerotic plaque. Objective : In this study, we aimed to investigate the effect of Bupleuri radix(SH) on the foam cell formation, a critical initiation stage of atherosclerosis. Methods : To achieve the goal, we examined the effect of SH on LDL oxidation, nitric oxide production in RAW264.7, and the effect of SH on cupuric sulfate-induced cytotoxicity, LDH release, and macrophage activity. Results : SH inhibited the formation of oxidized LDL from native LDL in RAW264.7 cell culture, and decreased the release of LDH from cupric sulfate-stimulated RAW264.7 cell. In other experiments, SH activated RAW264.7 cell, and prolonged the survival time, and inhibited foam cell formation induced by oxLDL in Raw 264.7 cells. Conclusion : These results showed that SH might prevent atherosclerosis by controlling the early stages of foam cell formation.

Keywords

References

  1. Kullo K.J., Gau G.T. and Tajik J. : Novel risk factors for atherosclerosis. Mayo Clin Proc 2000 ; 75 : 369-380.
  2. Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis : lessons from murine models and implications for therapy. Curr Drug Targets. 2007 ; 8(12) : 1249-63.
  3. Rios FJ, Koga MM, Ferracini M, Jancar S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS One. 2012 ; 7(5) : e36632.
  4. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009 ; 19(1) : 136-45.
  5. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006 ; 4(3) : 211-21. https://doi.org/10.1016/j.cmet.2006.06.007
  6. Tojo N, Asakura E, Koyama M, Tanabe T, Nakamura N. Effects of macrophage colony-stimulating factor (M-CSF) on protease production from monocyte, macrophage and foam cell in vitro : a possible mechanism for anti-atherosclerotic effect of M-CSF. Biochim Biophys Acta. 1999 ; 1452(3) : 275-84. https://doi.org/10.1016/S0167-4889(99)00127-5
  7. van der Kooij MA, Morand OH, Kempen HJ, van Berkel TJ. Decrease in scavenger receptor expression in human monocyte-derived macrophages treated with granulocyte macrophage colony-stimulating factor. Arterioscler Thromb Vasc Biol. 1996 ; 16(1) : 106-14. https://doi.org/10.1161/01.ATV.16.1.106
  8. James E. McLaren, Daryn R. Michael, Tim G. Ashlin, Dipak P. Ramji. Cytokines, macrophage lipid metabolism and foam cells : Implications for cardiovascular disease therapy. Progress in Lipid Research 2011 ; 50 : 331-347. https://doi.org/10.1016/j.plipres.2011.04.002
  9. Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004 ; 15(4) : 237-54. https://doi.org/10.1016/j.cytogfr.2004.03.004
  10. Ehrenwald, E., and P. L. Fox. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J. Clin. Invest. 1996 ; 97 : 884-890. https://doi.org/10.1172/JCI118491
  11. Rozenberg,O., et al. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress : studies in PON1-knockout mice. Free Radic. Biol. Med. 2003 ; 34 : 774-784. https://doi.org/10.1016/S0891-5849(02)01429-6
  12. Carr, A.C., M. R. McCall, and B. Frei. Oxidation of LDL by myeloperoxidase and reactive nitrogen species : reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 2000 ; 20 : 1716-1723. https://doi.org/10.1161/01.ATV.20.7.1716
  13. Rydberg, E. K., et al. Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arterioscler. Thromb. Vasc. Biol. 2004 ; 24 : 2040-2045. https://doi.org/10.1161/01.ATV.0000144951.08072.0b
  14. Sakashita, T. et al. Essential involvement of 12-lipoxygenase in regio specific and stereospecific oxidation of low density lipoprotein by macrophages. Eur. J. Biochem. 1999 ; 265 : 825-831. https://doi.org/10.1046/j.1432-1327.1999.00803.x
  15. Cathcart, M. K. Regulation of superoxide anion production by NADPH oxidase in monocytes/ macrophages : contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004 ; 24 : 23-28. https://doi.org/10.1161/01.ATV.0000097769.47306.12
  16. Xu, W., et al. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. J. Biol. Chem. 2001 ; 276 : 36454-36459. https://doi.org/10.1074/jbc.M105093200
  17. Li, Q., and M. K. Cathcart. Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation. J. Biol. Chem. 1997 ; 272 : 2404-2411. https://doi.org/10.1074/jbc.272.4.2404
  18. 完譯中藥大辭典, 정담, p2622-2632, 1999
  19. Kim SY, Yun-Choi HS. Platelet anti-aggregating activities of bupleurumin from the aerial parts of Bupleurum falcatum. Arch Pharm Res. 2007 ; 30(5) : 561-4. https://doi.org/10.1007/BF02977649
  20. Chen YL, Lin SZ, Chang JY, Cheng YL, Tsai NM, Chen SP, Chang WL, Harn HJ. In vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells. Biochem Pharmacol. 2006 ; 72(3) : 308-19. https://doi.org/10.1016/j.bcp.2006.04.031
  21. Nakahara Y, Okawa M, Kinjo J, Nohara T. Oleanene glycosides of the aerial parts and seeds of Bupleurum falcatum and the aerial parts of Bupleurum rotundifolium, and their evaluation as anti-hepatitis agents. Chem Pharm Bull (Tokyo). 2011 ; 59(11) : 1329-39. https://doi.org/10.1248/cpb.59.1329
  22. 이준무, 이은, 최무영. 시호(Bupleuri Radix)분말이 고콜레스테롤 급여 흰쥐의 체지질구성 및 TBARS 량에 미치는 영향. 대한본초학회지, 2000 ; 15(1) : 67-71
  23. Hazen S.L. and Heinecke J.W. : 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalysed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99, 2075, 1997 https://doi.org/10.1172/JCI119379
  24. Leuwenburg C., Rasmussrn J.E. and Hsu F.F : Mass spectrometric quantitation of marker for protein oxidation by tyrosyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 1997 ; 272 : 3520. https://doi.org/10.1074/jbc.272.6.3520
  25. Hashizume M, Mihara M. Cytokine. Atherogenic effects of TNF-${\alpha}$ and IL-6 via up-regulation of scavenger receptors. 2012 ; 58(3) : 424-30. https://doi.org/10.1016/j.cyto.2012.02.010
  26. Park JG, Oh GT. The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep. 2011 ; 44(8) : 497-505. https://doi.org/10.5483/BMBRep.2011.44.8.497
  27. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007 ; 39(2) : 86-93
  28. Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res. 2003 ; 93(4) : 280-91. https://doi.org/10.1161/01.RES.0000087541.15600.2B