DOI QR코드

DOI QR Code

The effect of caspase-3 inhibition on interdigital tissue regression in explant cultures of developing mouse limbs

  • Kudelova, Judita (Institute of Physiology, University of Veterinary and Pharmaceutical Sciences) ;
  • Tucker, Abigail S. (Department of Craniofacial Development and Orthodontics, King's College London) ;
  • Dubska, Lenka (Masaryk Memorial Cancer Institute) ;
  • Chlastakova, Ivana (Institute of Physiology, University of Veterinary and Pharmaceutical Sciences) ;
  • Doubek, Jaroslav (Institute of Physiology, University of Veterinary and Pharmaceutical Sciences) ;
  • Matalova, Eva (Institute of Physiology, University of Veterinary and Pharmaceutical Sciences)
  • Received : 2011.11.14
  • Accepted : 2012.03.15
  • Published : 2012.08.31

Abstract

Interdigital tissue regression is one of the most well-known examples of embryonic programmed cell death, providing the mechanism behind separation of developing digits. Caspases have been shown to play a key part in this process, with activated caspase-3 localized between the developing digits. In caspase-3 knock-out adult mice, however, the digits are completely separated with no webbing. In other mutants with defects in the apoptotic machinery, such as Apaf1 deficient mice, interdigital tissue regression is initially inhibited but the webbing eventually disappears as alternative/additional cell death mechanisms step in. In order to investigate whether a similar temporal effect occurs after loss of caspase-3, we have used an in vitro approach to inhibit caspase-3 at specific times during digit separation. Previous limb explant culture approaches have encountered problems with proper limb development in culture, and thus a modified technique was used. The new approach enables detailed observation of the effects of caspase-3 inhibition on interdigital regression. Using these methods, we show that caspase-3 inhibition caused a delay in the loss of interdigital tissue compared with control explants, similar to that observed in Apaf1 mutant mice. Along with immunohistochemistry, active caspase-3 positive cells of the interdigital vs. digital regions were measured by flow cytometry. Notably, activated caspase-3 in vivo was found not only in the interdigital mesenchyme but also in the TUNEL negative digit region, supporting a role for caspase-3 in nonapoptotic events.

Keywords

References

  1. Amin SA, Matalova E, Simpson C, Yoshida H, Tucker AS. 2007. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation. BMC Dev Biol. 7:134-141. https://doi.org/10.1186/1471-213X-7-134
  2. Boehm B, Rautschka M, Quintana L, Raspopovic J, Jan Z, Sharpe J. 2011. A landmark-free morphometric staging system for the mouse limb bud. Development. 138: 1227-1234. https://doi.org/10.1242/dev.057547
  3. Cecconi F, Alvares-Bolago G, Meyer BI, Roth KA, Gruss P. 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell. 94:727-737. https://doi.org/10.1016/S0092-8674(00)81732-8
  4. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P. 1999. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol. 9:967-970. https://doi.org/10.1016/S0960-9822(99)80425-4
  5. De Valck D, Luyten FP. 2001. Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures. Cell Death Differ. 8:985-994. https://doi.org/10.1038/sj.cdd.4400912
  6. Diep L, Matalova E, Mitsiadis T, Tucker AS. 2009. Contribution of the tooth bud mesenchyme to alveolar bone. J Exp Zoolog B Mol Dev Evol. 312B:510-517. https://doi.org/10.1002/jez.b.21269
  7. Doseff AI. 2004. Apoptosis: the sculptor of development. Stem Cells Dev. 13:473-483. https://doi.org/10.1089/scd.2004.13.473
  8. Hernandez-Martinez R, Covarrubias L. 2011. Interdigital cell death function and regulation. Dev Growth Differ. 53:245-258. https://doi.org/10.1111/j.1440-169X.2010.01246.x
  9. Hurle JM, Ros MA, Climent V, Garcia-Martinez V. 1996. Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc Res Techniq. 34:236-246. https://doi.org/10.1002/(SICI)1097-0029(19960615)34:3<236::AID-JEMT6>3.0.CO;2-N
  10. Kuida K, Zheng TS, Na SQ, Kuan CY, Yang D, Karasuyama H, Rakic P, Flavell RA. 1996. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 384:368-372. https://doi.org/10.1038/384368a0
  11. Lakhani SS, Masud A, Kuida K, Porter GA, Booth CJ, Mehal WZ, Inayat I, Flavell RA. 2006. Caspase-3 and 7: key mediators of mitochondrial events in apoptosis. Science. 311:847-851. https://doi.org/10.1126/science.1115035
  12. Matalova E, Antonarakis GS, Sharpe PT, Tucker AS. 2005. Cell lineage of primary and secondary enamel knots. Dev Dyn. 233:754-759. https://doi.org/10.1002/dvdy.20396
  13. Matalova E, Sharpe PT, Lakhani SA, Roth KA, Flavell RA, Setkova J, Misek I, Tucker AS. 2006. Molar tooth development in caspase-3 deficient mice. Int J Dev Biol. 50:491-497.
  14. Matalova E, Dubska L, Fleischmannova J, Chlastakova I, Janeckova E, Tucker AS. 2010. Primary enamel knot apoptosis evaluated by flow cytometry of laser capture microdissected samples. Arch Oral Biol. 55:570-575. https://doi.org/10.1016/j.archoralbio.2010.05.007
  15. Meier P, Finch A, Evan G. 2000. Apoptosis in development. Nature. 407:796-801. https://doi.org/10.1038/35037734
  16. Mirkes PE, Little SA, Umpierre CC. 2001. Co-localization of active caspase-3 and DNA fragmentation (TUNEL) in normal and hyperthermia-induced abnormal mouse development. Teratology. 63:134-143. https://doi.org/10.1002/tera.1024
  17. Miura M, Chen XD, Allen MR, Bi YM, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, et al. 2004. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 114:1704-1713. https://doi.org/10.1172/JCI20427
  18. Montero JA, Hurle JM. 2010. Sculpturing digit shape by cell death. Apoptosis. 15:365-375. https://doi.org/10.1007/s10495-009-0444-5
  19. Nakanishi K, Maruyama M, Shibata T, Morishama N. 2001. Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. J Biol Chem. 276:41237-41244. https://doi.org/10.1074/jbc.M105648200
  20. Ranger AM, Malynn BA, Kosmeyer SJ. 2001. Mouse models of cell death. Nat Gen. 28:113-118. https://doi.org/10.1038/88815
  21. Setkova J, Matalova E, Sharpe PT, Misek I, Tucker AS. 2007. Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice. Arch Oral Biol. 52:15-19. https://doi.org/10.1016/j.archoralbio.2006.07.006
  22. Storm EE, Kingsley DM. 1999. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 209:11-27. https://doi.org/10.1006/dbio.1999.9241
  23. Szymczyk KH, Freeman CS, Adams V, Srinivas V, Steinbeck MJ. 2006. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 209:836-844. https://doi.org/10.1002/jcp.20770
  24. van der Hoeven F, Schimmang T, Volkmann A, Mattei MG, Kyewski B, Ruther U. 1994. Programmed cell death is affected in the novel mouse mutant Fused toes (Ft). Development. 120:2601-2607.
  25. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 94:739-750. https://doi.org/10.1016/S0092-8674(00)81733-X
  26. Zuzarte-Luis V, Berciano MT, Lafarga M, Hurle JM. 2006. Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis. 11:701-715. https://doi.org/10.1007/s10495-006-5481-8

Cited by

  1. Dynamics of caspase-3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach vol.48, pp.9, 2012, https://doi.org/10.1007/s11626-012-9542-8
  2. Bioluminescence determination of active caspase‐3 in single apoptotic cells vol.34, pp.12, 2012, https://doi.org/10.1002/elps.201200675
  3. Caspases and osteogenic markers-in vitro screening of inhibition impact vol.52, pp.2, 2016, https://doi.org/10.1007/s11626-015-9964-1
  4. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination vol.147, pp.4, 2017, https://doi.org/10.1007/s00418-016-1508-6