DOI QR코드

DOI QR Code

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads

미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구

  • Choi, Jong-Gu (Dept. of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Oriental Biomedical Engineering, Sangji University) ;
  • Park, Young-Seok (Bluemtech., Ltd., Oriental Medical Industry Development Center, Sangji University)
  • 최종구 (상지대학교 한방의료공학과) ;
  • 이상석 (상지대학교 한방의료공학과) ;
  • 박영석 (블루엠테크, 한방의료기기산업진흥센터)
  • Received : 2012.08.06
  • Accepted : 2012.10.04
  • Published : 2012.10.31

Abstract

The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.

미크론 자성비드 검출용 바이오센서에 활용하는 GMR-SV 박막을 이온빔 스퍼터링 증착법으로 glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm)의 구조를 갖도록 증착하였다. 비자성체 Cu의 두께가 3.0 nm에서 2.2 nm까지 얇아질수록 교환결합력은 증가하였고 자기저항비는 다소 감소하였다. 비자성체의 두께가 얇으면 반강자성체의 층간 교환작용이 강자성체의 고정층뿐만 아니라 자유층의 스핀배열에도 영향을 주고 있음을 확인할 수 있었다. 또한 리소그래피 공정 과정을 거쳐 GMR-SV 소자를 제작하여 미크론 자기비드를 검출하였다. 여기서 자기비드를 떨어뜨리기 전과 후의 자기저항비, 교환결합력, 보자력은 각각 0.9%, 3Oe, 2 Oe의 값을 나타내었다. 이러한 결과로 나노 단위의 바이오센서에 활용할 수 있는 가능성을 보여주었다.

Keywords

References

  1. D. A. Baker, Nature 405, 39 (2000). https://doi.org/10.1038/35011000
  2. G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Acut. A 126, 98 (2006). https://doi.org/10.1016/j.sna.2005.10.001
  3. D. L. Graham, H. A. Feliciano, P. P. Fretias, L. A. Clarke, and M. D. Amaral, Sens. Acut. B 107, 936 (2005). https://doi.org/10.1016/j.snb.2004.12.071
  4. B. M. de Boer, J. A. H. M. Kahlman, T. P. G. H. Jansen, H. Duric, and J. Veen, Biosens. Bioelectron. 22, 2366 (2006).
  5. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, New York (1999).
  6. S. H. Park, K. S. Soh, M. C. Ahn, D. G. Hwang, and S. S. Lee, J. Kor. Magn. Soc. 16, 157 (2006). https://doi.org/10.4283/JKMS.2006.16.3.157
  7. S. S. Lee, S. H. Park, and K. S. Soh, Sae Mulli 52, 564 (2006).
  8. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  9. J. G. Choi, I. S. Koh, Y. M. Gong, M. H. Kim, Y. S. Park, D. G. Hwang, and S. S. Lee, J. Kor. Magn. Soc. 19, 1 (2009). https://doi.org/10.4283/JKMS.2009.19.1.001
  10. J. G. Choi, T. J. Kwak, J. T. Shim, and S. S. Lee, J. Kor. Magn. Soc. 20, 35 (2010). https://doi.org/10.4283/JKMS.2010.20.2.035
  11. J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 20, 41 (2010). https://doi.org/10.4283/JKMS.2010.20.2.041

Cited by

  1. Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor vol.23, pp.3, 2013, https://doi.org/10.4283/JKMS.2013.23.3.098
  2. Detection of Magnetic Bacteria Using PHR Sensors with Trilayer Structure vol.23, pp.6, 2013, https://doi.org/10.4283/JKMS.2013.23.6.200
  3. Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device vol.24, pp.4, 2014, https://doi.org/10.4283/JKMS.2014.24.4.101
  4. Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channeland GMR-SV Device vol.25, pp.1, 2015, https://doi.org/10.4283/JKMS.2015.25.1.016
  5. Use of a GMR-SV Device Below a Single Coil and Channel to Detect the Deformation Properties of Red Blood Cell Membranes pp.1543-186X, 2019, https://doi.org/10.1007/s11664-018-6617-7