DOI QR코드

DOI QR Code

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method

Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험

  • Received : 2012.04.09
  • Accepted : 2012.08.02
  • Published : 2012.10.31

Abstract

A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

이 연구는 실험과 병행 화재에 노출된 철근콘크리트 구조물의 갤러킨 유한요소해석 방법을 제시하였다. 이 방법은 비선형 비정상 온도분포해석에 관한 것으로 2차원 삼각형 요소에 대한 해석기법을 구축하였다. 해석기법의 검증을 위하여 실규모 철근콘크리트 슬래브에 대한 내화실험을 실시하였으며, 실험 결과와의 비교를 통해 해석기법의 유효성을 확인하였다. 또한 콘크리트 부재의 내화성능에 대한 실험 결과를 분석하였다. 변수분석에서는 화재규모, 콘크리트의 온도의존성 열적특성값, 콘크리트의 함수율이 콘크리트의 내화성능에 미치는 영향을 평가하였다. 이 연구에서 구축된 수치해석모델은 다양한 화재규모와 대류, 복사 경계조건, 재료의 온도의존성 열적특성값을 자유롭게 고려할 수 있다. 또한 이 논문에서는 콘크리트 슬래브를 대상으로 표준화재곡선을 대상으로만 분석하였지만 관련된 철근콘크리트 기둥 골조 해석에 용이하게 사용될 수 있을 것으로 판단되었다.

Keywords

References

  1. Harmathy, T. Z., "Fire Safety Design and Concrete," Longman Scientific and Technical, Longman House, Burnt Mill, Harlow, ESSEX CM20 2JE, UK, 1993, pp. 38-41.
  2. Kodur, V., "World Trade Centre Disater-Building performance Investigation," CSCE workshop at Toronto, 2003, pp. 1-18.
  3. Kwon, Y. J., "Case Study Damaged by Fire and Repair Methods for Concrete Building," Magazine of the Korea Concrete Institute, Vol. 23, No. 3, 2011, pp. 44-46.
  4. Shin, Y. S., Park, J. E., Mun, J. Y., and Kim, H. S., "Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures," Journal of the Korea Concrete Institute, Vol. 23, No. 3, 2011, pp. 377-384. https://doi.org/10.4334/JKCI.2011.23.3.377
  5. Kang, S. W. and Hong, S. G., "Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures," Journal of the Korea Concrete Institute, Vol. 13, No. 3, 2001, pp. 268-276.
  6. Lee, C. D., Shin, Y. S., Lee, S. W., and Lee, C. E., "Numerical Modeling of Heat Transfer in Reinforced Concrete Columns Exposed to Fire," Journal of the Korea Concrete Institute, Vol. 17, No. 6, 2005, pp. 871-878. https://doi.org/10.4334/JKCI.2005.17.6.871
  7. Han, B. C., Kwon, Y. J., Kim, J. H., Shin, Y. S., and Choi, E. G., "Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire," Journal of the Korea Concrete Institute, Vol. 19, No. 3, 2007, pp. 283-292. https://doi.org/10.4334/JKCI.2007.19.3.283
  8. Lie, T. T., Lin, T. D., Allen, D. E., and Abrams, M. S., "Fire Resistance of Reinforce Concrete Columns," National Research Council Canada Division of Building Research, No. 1167, Ottawa, 1984, pp. 25-45.
  9. Harada, K., "A Study on the Prediction of Temperature Rise of Concrete in Fire-Resistance Test(耐火試驗におけ るコンクロ一トの溫度上昇の豫測に關する硏究)," Ph.D Thesis, Kyoto University, 1992
  10. Kodur, V. K. R., "Fire Performance of High-Strength Concrete Structural Members," Construction Technology Update No. 31, Institute for Research in Construction, National Research Council of Canada, 1999, pp. 1-20.
  11. Loh, J. S., Seetheramu, K. N., and Quadir, G. A., "Fast Transient Analysis of Fourier and Non-Fourier Heat Conduction," International Journal of Heat and Mass transfer, Vol. 50, No. 21, 2007, pp. 4400-4408. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.021
  12. Cho, C. G., Han, B. C., Lee, J. H., and Kim, Y. Y., "Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel," Journal of Korea Concrete Institute, Vol. 22, No. 5, 2010, pp. 695-702. https://doi.org/10.4334/JKCI.2010.22.5.695
  13. Eurocode 2, Design of Concrete Structures Part 1, 2 General Rules-Structural Fire Design, DO ENV 1992, 1996, pp. 56-65.
  14. Kwon, Y. J., Kim, N. H., Lee, J. Y., Kim, D. J., and Harada K., "Temperature Dependency Thermal Properties of High- Strength Concrete," Proceedings of Fire Science and Engineering in Japan Association, 2010, pp. 282-283.

Cited by

  1. Research trends and design guidelines for fire resistance of structural concrete in South Korea vol.69, pp.7, 2017, https://doi.org/10.1680/jmacr.15.00361