DOI QR코드

DOI QR Code

Growth of ZnO Nanorod with High-quality Assisted by an External Electric Field

외부 전계 인가를 통한 고품질 ZnO 나노로드 성장

  • 손민규 (부산대 공대 전자전기공학과) ;
  • 서현웅 (부산대 공대 전자전기공학과) ;
  • 김수경 (부산대 공대 전자전기공학과) ;
  • 홍나영 (부산대 공대 전자전기공학과) ;
  • 김병만 (부산대 공대 전자전기공학과) ;
  • 박송이 (부산대 공대 전자전기공학과) ;
  • 김희제 (부산대 공대 전자전기공학과)
  • Received : 2012.07.24
  • Accepted : 2012.09.27
  • Published : 2012.11.01

Abstract

In this study, the ZnO nanorod is grown on the seed layered glass substrate by applying an external electric field to fabricate the ZnO nanorod with the high quality and to increase the yield of the ZnO nanorod. It is possible to grow the definite and clear hexagonal ZnO nanorod as the cathode of the high voltage is connected to the side of the seed layered glass substrate and the anode is connected to the opposite side because more $Zn^{2+}$ ions are located around the ZnO seed layer and are accumulated easily due to the external electric field. As a result, it is succeeded to fabricate the definite hexagonal ZnO nanorod having better structural characteristics by applying the external electric field during the growth process. Therefore, it is demonstrated that the external electric field is effective to fabricate the high quality ZnO nanorod without changing any composition of the ZnO nanorod.

Keywords

References

  1. Y. Lu, I. Dajani, R. J. Knize, "Ultrafast laser assisted fabrication of ZnO nanorod arrays for photon detection applications", Applied Surface Science, Vol. 253, pp. 7851-7854, 2007. https://doi.org/10.1016/j.apsusc.2007.02.091
  2. O. Lupan, G. Chai, L. Chow, "Fabrication of ZnO nanorod-based hydrogen gas nanosensor", Microelectronics Journal, Vol. 38, pp. 1211-1216, 2007. https://doi.org/10.1016/j.mejo.2007.09.004
  3. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G. R. Patzke, G. Chen, "Humidity sensors based on ZnO/TiO2 core-shell nanorod arrays with enhanced sensitivity", Sensors and Actuators B: Chemical, Vol. 159, pp. 1-7, 2011. https://doi.org/10.1016/j.snb.2010.12.024
  4. C. Y. Chou, J. S. Huang, C. H. Wu, C. Y. Lee, C. F. Lin, "Lengthening the polymers solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells", Solar Energy Materials and Solar Cells, Vol. 93, pp. 1608-1612, 2009. https://doi.org/10.1016/j.solmat.2009.04.016
  5. Y. Tang, X. Hu, M. Chen, L. Luo, B. Li, L. Zhang, "CdSe nanocrystal sensitized ZnO core-shell nanorod array films: Preparation and photovoltaic properties", Electrochimica Acta, Vol. 54, pp. 2742-2747, 2009. https://doi.org/10.1016/j.electacta.2008.11.047
  6. R. S. Kumar, P. Sudhagar, P. Matheswaran, R. Sathyamoorthy, Y. S. Kang, "Influence of seed layer treatment on ZnO growth morphology and their device performance in dye-sensitized solar cells", Materials Science and Engineering: B, Vol. 172, pp. 283-288, 2010. https://doi.org/10.1016/j.mseb.2010.05.032
  7. Q. Huang, L. Fang, X. Chen, M. Saleem, "Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells", Journal of Alloys and Compounds, Vol. 509, pp. 9456-9459, 2011. https://doi.org/10.1016/j.jallcom.2011.07.029
  8. Y. M. Lee, H. W. Yang, "Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells", Journal of Solid State Chemistry, Vol. 184, pp. 615-623, 2011. https://doi.org/10.1016/j.jssc.2011.01.021
  9. R. S. Mane, W. J. Lee, H. M. Pathan, S. H. Han, "Nanocrystalline TiO2/ZnO thin films: Fabrication and application to dye-sensitized solar cells", Journal of Physical Chemistry B, Vol. 109, pp. 24254-24259, 2005. https://doi.org/10.1021/jp0531560
  10. W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, "Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods", Applied Physics Letters, Vol. 80, pp. 4232-4234, 2002. https://doi.org/10.1063/1.1482800
  11. T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, T. Satoh, "Effect of laser-ablated impurities on aligned ZnO nanorods grown by chemical vapor deposition", Thin Solid Films, Vol. 487, pp. 35-39, 2005. https://doi.org/10.1016/j.tsf.2005.01.031
  12. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, "Catalytic growth of zinc oxide wires by vapor transport", Advanced Materials, Vol. 13, pp. 113-116, 2001. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  13. Y. Sun, G. M. Fuge, M. N. R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods", Chemical Physics Letters, Vol. 396, pp. 21-26, 2004. https://doi.org/10.1016/j.cplett.2004.07.110
  14. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions", Chemistry of Materials, Vol. 17, pp. 1001-1006, 2005. https://doi.org/10.1021/cm048144q
  15. K. Prabakar, H. Kim, "Growth control of ZnO nanorod density by sol-gel method", Thin Solid Films, Vol. 518, pp. e136-e138, 2010. https://doi.org/10.1016/j.tsf.2010.03.103
  16. M. Guo, P. Diao, S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions", Journal of Solid State Chemistry, Vol. 178, pp. 1864-1873, 2005. https://doi.org/10.1016/j.jssc.2005.03.031
  17. H. Gao, G. Fang, M. Wang, N. Liu, L. Yuan, C. Li, L. Ai, J. Zhang, C. Zhou, S. Wu, X. Zhao, "The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells", Materials Research Bulletin, Vol. 43, pp. 3345-3351, 2008. https://doi.org/10.1016/j.materresbull.2008.02.010
  18. M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng, L. D. Zhang, "Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueuous solution method", Journal of Materials Science: Materials in Electronics, Vol. 19, pp. 211-216, 2008. https://doi.org/10.1007/s10854-007-9319-0