DOI QR코드

DOI QR Code

Characteristics of Cryogenic Cascade Refrigeration Cycle for Liquefaction of Natural Gas with the Pressure Drop of Heat Exchanger

LNG 열교환기의 압력강하에 따른 천연가스 액화용 초저온 캐스케이드 냉동사이클 특성

  • 윤정인 (부경대학교 냉동공조공학과) ;
  • 최광환 (부경대학교 냉동공조공학과) ;
  • 손창효 (부경대학교 냉동공조공학과) ;
  • 곽진우 ((주)LG전자 HA 냉장고사업부 연구기획) ;
  • 백승문 (부경대학교 대학원)
  • Received : 2012.05.18
  • Accepted : 2012.08.06
  • Published : 2012.09.30

Abstract

Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600 of its standard volume. This gives LNG the advantage in transportation. In this study, the effects of the pressure drop of refrigerant and natural gas in the LNG heat exchanger of cryogenic cascade refrigeration cycle were investigated and then the design criteria for the pressure drop of refrigerant and natural gas of the LNG heat exchanger were proposed. The pressure drop of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work and COP of cryogenic cascade liquefaction cycle.

천연가스는 $-160^{\circ}C$까지 냉각 및 액화되어 액화천연가스(LNG)가 되고, 이때 LNG의 체적은 천연 가스의 1/600로 줄어든다. 이로 인해 LNG는 수송시에 이점이 있다. 본 연구에서는 천연가스 액화용 초저온 캐스케이드 냉동사이클의 LNG 열교환기내 냉매와 천연가스의 압력강하가 액화사이클에 미치는 영향을 파악한 후, LNG 열교환기 설계시 압력강하에 대한 기준안을 제시하고자 한다. 이를 위해 HYSYS를 이용하여 초저온 캐스케이드 액화사이클 내 LNG 열교환기의 압력강하에 대해서 시뮬레이션을 수행하였다. 그 결과, 초저온 액화사이클의 압축일량과 성능계수(COP)의 증가로부터, LNG 열교환기 내의 압력강하는 50 kPa정도를 기준 설계 압력강하로 설정할 수 있음을 알 수 있었다.

Keywords

References

  1. Gas Plant Agency's detailed plan of Korea Gas Corporation, 2008 (in Korean).
  2. S. T. Oh, H. S. Lee, J. I. Yoon, et al., "The state of the arts of LNG liquefaction cycle," The Sarek Journal, vol. 38, no. 3, pp. 13-17, 2007 (in Korean).
  3. D. L. Andress. The Phillips Optimized Cascade LNG Process a Quarter Century of Improvement, The Permission of the Institute of Gas Technology, 1996.
  4. L. Terry. "Comparison of liquefaction process," LNG Journal vol. 21, no. 3, pp. 28-33, 1998.
  5. Qualls, Philip Hunter, "A Novel approach taking the Phillips optimized cascasde LNG process into the future," AIChE Spring National Meeting 2003, pp. 1-29, 2003.
  6. Wen-sheng Cao, et al. "Parameter comparison of two small-scale natural gas liquefaction process in skid-mounted packages," Applies Thermal Engineering, vol. 26, pp. 898-904, 2006. https://doi.org/10.1016/j.applthermaleng.2005.09.014
  7. Tatiana Morosuk, Mohad Nazri Bin Omar, geoget satsaronis and Rolanda Naw, "Advanced exergetic analysis of a refrigeration system for liquefaction of natural gas," Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), pp. 1-40, 2010.
  8. Horatiu Pop, Michel Feidt, Cristian Gabriel Alionte et al., "Optimization of conventional irreversible cascade refrigeration systems," U.P.B. Sci. Bull., vol. 71, iss. 4, pp. 1-12, 2009.
  9. Qualls, Anthony P. Eaton, "Liquid Expander in the phillips optimized cascade LNG process," LNG14, pp. 38-44, 2004.
  10. S. T Oh, H. S. Lee, J. I Yoon et al., "Simulation of LNG liquefaction cycle using two stage intercooler," The Korean Institute of Gas, 2009 Spring annual conference, pp. 225-228. 2009(in Korean).
  11. H.S. Lee, S. T. Oh, J. I Yoon et al., "Analysis of cryogenic refrigeration cycle using two stage intercooler," 5th International Conference on Diffusion in Solids and Liquids, pp. 40-41, 2009.
  12. Jin Woo Kwag, Won Jae Choi, Jung In Yoon et al., "Comparison of performance on the natural gas liquefaction process using intercooler," ICCHT2010, p. 18, 2010.

Cited by

  1. 열교환기 효율이 초저온 냉동사이클 성능에 미치는 영향 vol.17, pp.4, 2012, https://doi.org/10.9726/kspse.2013.17.4.058