Acknowledgement
Supported by : Kyung Hee University
References
- A. A. Arkhipova, Partial regularity of solutions of quasilinear elliptic systems with a nonsmooth condition for a conormal derivative, Mat. Sb. 184 (1993), no. 2, 87-104; translation in Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 215-230.
- A. A. Arkhipova, On the regularity of the solution of the Neumann problem for quasilinear parabolic systems, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 5, 3-25; translation in Russian Acad. Sci. Izv. Math. 45 (1995), no. 2, 231-253.
-
A. A. Arkhipova, Reverse Holder inequalities with boundary integrals and
$L_{p}$ -estimates for solutions of nonlinear elliptic and parabolic boundary-value problems, Nonlinear evolution equations, 15-42, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995. - H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arch. Ration. Mech. Anal. 196 (2010), no. 1, 25-70. https://doi.org/10.1007/s00205-009-0228-7
-
H. Dong and D. Kim,
$L_{p}$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations 40 (2011), no. 3-4, 357-389. https://doi.org/10.1007/s00526-010-0344-0 - H. Dong and D. Kim, Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth, Comm. Partial Differential Equations 36 (2011), no. 10, 1750- 1777. https://doi.org/10.1080/03605302.2011.571746
- M. Giaquinta, A counter-example to the boundary regularity of solutions to elliptic quasilinear systems, Manuscripta Math. 24 (1978), no. 2, 217-220. https://doi.org/10.1007/BF01310055
- M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, NJ, 1983.
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
- O. A. Ladyhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London 1968.
- O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society: Providence, RI, 1967.
- G. M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations 49 (1983), no. 2, 218-257. https://doi.org/10.1016/0022-0396(83)90013-X
- D. K. Palagachev, Global Holder continuity of weak solutions to quasilinear divergence form elliptic equations, J. Math. Anal. Appl. 359 (2009), no. 1, 159-167. https://doi.org/10.1016/j.jmaa.2009.05.044
- D. K. Palagachev, Quasilinear divergence form elliptic equations in rough domains, Complex Var. Elliptic Equ. 55 (2010), no. 5-6, 581-591. https://doi.org/10.1080/17476930903276159
- D. K. Palagachev and L. G. Softova, The Calderon-Zygmund property for quasilinear divergence form equations over Reifenberg flat domains, Nonlinear Anal. 74 (2011), no. 5, 1721-1730. https://doi.org/10.1016/j.na.2010.10.044
- J. Stara, O. John, and J. Maly, Counterexamples to the regularity of weak solutions of the quasilinear parabolic system, Comment. Math. Univ. Carolin. 27 (1986), no. 1, 123-136.
-
P. Winkert,
$L^{\infty}$ -estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differential Equations Appl. 17 (2010), no. 3, 289-302. https://doi.org/10.1007/s00030-009-0054-5 - P. Winkert and R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 4, 865-878.
Cited by
- Lorentz Estimates for Weak Solutions of Quasi-linear Parabolic Equations with Singular Divergence-free Drifts pp.1496-4279, 2019, https://doi.org/10.4153/CJM-2017-049-3