References
- Leuschner, C.; Kumar, C. In Nanofabrication Towards Biomedical Application; Jormes, J., Leuschner, C., Eds.; Wiley-VCH: 2005; pp 289-326
- Ferrari, M. Nature Rev. 2005, 5, 161. https://doi.org/10.1038/nrc1566
- Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M. Chem. Commun. 2005, 5, 571.
- Bianco, A.; Kostarelos, K.; Prato, M. Biology 2005, 9, 674.
- Ijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
- Prato, M.; Kostarelos, K.; Bianco, A. Acc. Chem. Res. 2008, 41, 60. https://doi.org/10.1021/ar700089b
- Kam, N. W. S.; Dai, H. Physica Status Solidi B: Basic Solid State Phys. 2006, 243, 3561. https://doi.org/10.1002/pssb.200669226
- Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biochim. Biophys. Acta 2006, 1758, 404. https://doi.org/10.1016/j.bbamem.2005.10.008
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483. https://doi.org/10.1126/science.273.5274.483
- Hirsch, A. Angew Chem. Int. Ed. Engl. 2002, 41, 1853. https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
- Dyke, C. A.; Tour, J. M. Chem. Eur. J. 2004, 10, 812. https://doi.org/10.1002/chem.200305534
- Baei, M. T.; Soltani, A.; Moradi, A. V.; Tazikeh, L. E. Comput. Theoret. Chem. 2011, 970, 30. https://doi.org/10.1016/j.comptc.2011.05.021
- Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Euro. Phys. Lett. 1994, 28, 335. https://doi.org/10.1209/0295-5075/28/5/007
- Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081. https://doi.org/10.1103/PhysRevB.49.5081
- Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737. https://doi.org/10.1103/PhysRevLett.76.4737
- Bengu, E.; Marks, L. D. Phys. Rev. Lett. 2001, 86, 2385. https://doi.org/10.1103/PhysRevLett.86.2385
- Nirmala, V.; Kolandaivel, P. J. Mol. Struct. (Theochem) 2007, 817, 137.
- Solozhenko, V. L.; Lazarenko, A. G.; Petitet, J. P. J. Phys. Chem. Solids 2001, 62, 1331. https://doi.org/10.1016/S0022-3697(01)00030-0
- Zhi, C.; Bando, Y.; Tang, C. J. Am. Chem. Soc. 2005, 127, 17144. https://doi.org/10.1021/ja055989+
- Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Nanoscale Res. Lett. 2009, 4(2), 113. https://doi.org/10.1007/s11671-008-9210-9
- Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. https://doi.org/10.1021/ja01547a064
- Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.; Schmidt, S. P.; Holms, J. H.; Young, P. R.; Carter, G. W. J. Med. Chem. 1988, 31, 1719. https://doi.org/10.1021/jm00117a010
- Patt, W. C.; Hamilton, H. W.; Taylor, M. D.; Ryan, M. J.; Taylor, D. G., Jr.; Connolly, C. J. C.; Doherty, A. M.; Klutchko, S. R.; Sircar, I.; Steinbaugh, B. A.; Batley, B. L.; Painchaud, C. A.; Rapundalo, S. T.; Michniewicz, B. M.; Olson, S. C. J. J. Med. Chem. 1992, 35, 2562. https://doi.org/10.1021/jm00092a006
- Tsuji, K.; Ishikawa, H. Bioorg. Med. Chem. Lett. 1994, 4, 1601. https://doi.org/10.1016/S0960-894X(01)80574-6
- Bell, F. W.; Cantrell, A. S.; Hoegberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordon, C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M., Jr.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X.-X. J. Med. Chem. 1995, 38, 4929. https://doi.org/10.1021/jm00025a010
- Bovey, F. A. Nuclear Magnetic Resonance Spectroscopy; Academic Press: San Diego, 1988.
- Das, T. P.; Han, E. L. Nuclear Quadrupole Resonance Spectroscopy; Academic Press: New York, 1958.
- Baei, M. T.; Sayyed Alang, S. Z.; Moradi, A. V.; Torabi, P. J. Mol. Model 2011, doi: 10.1007/s00894-011-1130-4
- Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 783. https://doi.org/10.1007/s00706-011-0498-2
- Baei, M. T.; Moradi, A. V.; Moghimi, M.; Torabi, P. Comput. Theoret. Chem. 2011, 967, 179. https://doi.org/10.1016/j.comptc.2011.04.015
- Baei, M. T.; Moradi, A. V.; Torabi, P.; Moghimi, M. Monatsh Chem. 2011, 142, 1097. https://doi.org/10.1007/s00706-011-0547-x
- Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. https://doi.org/10.1021/cr040109f
- Hazarika, K. K.; Baruah, N. C.; Deka, R. C. Struct. Chem. 2009, 20, 1079. https://doi.org/10.1007/s11224-009-9512-2
- Parr, R. G.; Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
- Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
- Tournus, F.; Charlier, J. C. Phys. Rev. B 2005, 71, 165421. https://doi.org/10.1103/PhysRevB.71.165421
- Drago, R. S. Physical Methods for Chemists, 2nd ed.; Saunders College Publishing: Florida, 1992.
- Pyykkö, P. Mol. Phys. 2001, 99, 1617. https://doi.org/10.1080/00268970110069010
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, revision B03, Gaussian Inc., Pittsburgh, PA, 2003.
- Politzer, P.; Lane, P.; Murray, J. S.; Concha, M. C. J. Mol. Model 2005, 11, 1. https://doi.org/10.1007/s00894-004-0202-0
- Peralta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O'Connor, C. J.; Politzer, P. Nano Lett. 2003, 3, 21. https://doi.org/10.1021/nl020222q
- Hoffmann, A.; Sebastiani, D.; Sugiono, E.; Yun, S.; Kim, K. S.; Spiess, H. W.; Schnell, I. Chem. Phys. Lett. 2004, 11, 164.
Cited by
- DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids vol.25, pp.1, 2014, https://doi.org/10.1007/s11224-013-0292-3
- Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems vol.7, pp.31, 2015, https://doi.org/10.1021/acsami.5b04101
- 2,4-Disubstituted thiazoles as multitargated bioactive molecules vol.25, pp.9, 2016, https://doi.org/10.1007/s00044-016-1610-2
- S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs vol.38, pp.4, 2017, https://doi.org/10.1080/17415993.2017.1313255
- Electronic and Work Function-Based Sensors for Acetylsalicylic Acid Based on the AlN and BN Nanoclusters: DFT Studies pp.1572-8862, 2018, https://doi.org/10.1007/s10876-018-1466-3
- A Computational Study on the Purinethol Drug Adsorption on the AlN Nanocone and Nanocluster vol.29, pp.4, 2018, https://doi.org/10.1007/s10876-018-1381-7
- Quantum‐Chemical Modeling of Cyclic Peptide‐Selenium Nanoparticle as an Anticancer Drug Nanocarrier vol.41, pp.1, 2012, https://doi.org/10.1002/bkcs.11912
- Determination of H2S, COS, CS2 and SO2 by an aluminium nitride nanocluster: DFT studies vol.118, pp.7, 2012, https://doi.org/10.1080/00268976.2019.1658909
- Theoretical Investigation of Interaction 7-Hydroxy Phenothiazine 3-One Dye with Nanotube: a DFT Study vol.15, pp.1, 2012, https://doi.org/10.1134/s1990793121010152
- Review of the synthesis and biological activity of thiazoles vol.51, pp.5, 2012, https://doi.org/10.1080/00397911.2020.1854787
- Characterization and Inhibitor Activity of Two Newly Synthesized Thiazole vol.8, pp.1, 2012, https://doi.org/10.1007/s40735-021-00625-1