DOI QR코드

DOI QR Code

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo (Department of Biomedicinal Science & Biotechnology, Pai-Chai University) ;
  • Kang, Hyung-Sik (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kwak, Hahn-Shik (Department of Biomedicinal Science & Biotechnology, Pai-Chai University)
  • Received : 2012.06.25
  • Accepted : 2012.07.23
  • Published : 2012.09.30

Abstract

Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

Keywords

References

  1. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Aydin, H. H., Celik, H. A., Deveci, R., Karacali, S., Saydam, G., Bedii Omay, S. and Batur, Y. (2005) Induction of apoptosis by fatty acid ethyl esters in HepG2 cells. Food Chem. Toxicol. 43, 139-145. https://doi.org/10.1016/j.fct.2004.09.003
  3. Best, C. A., Sarkola, T., Eriksson, C. J., Cluette-Brown, J. E. and Laposata, M. (2006) Increased plasma fatty acid ethyl ester levels following inhibition of oxidative metabolism of ethanol by 4-methylpyrazole treatment in human subjects. Alcohol Clin. Exp. Res. 30, 1126-1131. https://doi.org/10.1111/j.1530-0277.2006.00138.x
  4. Calabrese, V., Renis, M., Calderone, A., Russo, A., Barcellona, M. L. and Rizza, V. (1996) Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radic. Biol. Med. 20, 391-397.
  5. Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1
  6. Granado-Serrano, A. B., Martin, M. A., Bravo, L., Goya, L. and Ramos, S. (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J. Nutr. 136, 2715-2721. https://doi.org/10.1093/jn/136.11.2715
  7. Kahraman, A., Cakar, H. and Koken, T. (2012) The protective effect of quercetin on long-term alcohol consumption-induced oxidative stress. Mol. Biol. Rep. 39, 2789-2794. https://doi.org/10.1007/s11033-011-1037-2
  8. Kang, H. S., Kim, Y. H., Lee, C. S., Lee, J. J., Choi, I. and Pyun, K. H. (1996) Suppression of interleukin-1 and tumor necrosis factor-alpha production by acanthoic acid, (-)-pimara-9(11),15-dien-19-oic acid, and it antifibrotic effects in vivo. Cell Immunol. 170, 212-221. https://doi.org/10.1006/cimm.1996.0154
  9. Kurose, I., Higuchi, H., Kato, S., Miura, S. and Ishii, H. (1996) Ethanol-induced oxidative stress in the liver. Alcohol Clin. Exp. Res. 20(1 Suppl), 77A-85A. https://doi.org/10.1111/j.1530-0277.1996.tb01736.x
  10. Laposata, M. (1998) Fatty acid ethyl esters: ethanol metabolites which mediate ethanol-induced organ damage and serve as markers of ethanol intake. Prog. Lipid Res. 37, 307-316. https://doi.org/10.1016/S0163-7827(98)00013-7
  11. Lenz, A. G., Costabel, U., Shaltiel, S. and Levine, R. L. (1989) Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal. Biochem. 177, 419-425. https://doi.org/10.1016/0003-2697(89)90077-8
  12. Lieber, C. S. (1997) Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta 257, 59-84. https://doi.org/10.1016/S0009-8981(96)06434-0
  13. Liu, S., Hou, W., Yao, P., Zhang, B., Sun, S., Nussler, A. K. and Liu, L. (2010) Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol. In Vitro 24, 516-522. https://doi.org/10.1016/j.tiv.2009.03.006
  14. Lu, Y. and Cederbaum, A. I. (2008) CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44, 723-738. https://doi.org/10.1016/j.freeradbiomed.2007.11.004
  15. Mates, J. M., Segura, J. A., Alonso, F. J. and Marquez, J. (2011) Anticancer antioxidant regulatory functions of phytochemicals. Curr. Med. Chem. 18, 2315-2338. https://doi.org/10.2174/092986711795656036
  16. Molina, M. F., Sanchez-Reus, I., Iglesias, I. and Benedi, J. (2003) Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol. Pharm. Bull. 26, 1398-1402. https://doi.org/10.1248/bpb.26.1398
  17. Navasumrit, P., Ward, T. H., Dodd, N. J. and O'Connor, P. J. (2000) Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure. Carcinogenesis 21, 93-99. https://doi.org/10.1093/carcin/21.1.93
  18. Nordmann, R., Ribière, C. and Rouach, H. (1992) Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radical Biol. Med. 12, 219-240. https://doi.org/10.1016/0891-5849(92)90030-K
  19. Ogony, J., Matthews, R., Anni, H., Shannon, K. and Ercal, N. (2008) The mechanism of elevated toxicity in HepG2 cells due to combined exposure to ethanol and ionizing radiation. J. Appl. Toxicol. 28, 345-355. https://doi.org/10.1002/jat.1285
  20. Oliva, J., Bardag-Gorce, F., Tillman, B. and French, S. W. (2011) Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro. Exp. Mol. Pathol. 90, 295-299. https://doi.org/10.1016/j.yexmp.2011.02.006
  21. Prasad, N. R., Jeyanthimala, K. and Ramachandran, S. (2009) Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J. Photochem. Photobiol. 95, 196-203. https://doi.org/10.1016/j.jphotobiol.2009.03.007
  22. Rampart, M., Beetens, J. R., Bult, H., Herman, A. G., Parnham, M. J. and Winkelmann, J. (1986) Complement-dependent stimulation of prostacyclin biosynthesis: inhibition by rosmarinic acid. Biochem. Pharmacol. 35, 1397-1400. https://doi.org/10.1016/0006-2952(86)90289-3
  23. Reddy, M. B., Hurrell, R. F., Juillerat, M. A. and Cook, J. D. (1996) The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am. J. Clin. Nutr. 63, 203-207. https://doi.org/10.1093/ajcn/63.2.203
  24. Ross, J. A. and Kasum, C. M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  25. Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S. and Russo, G. L. (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 83, 6-15. https://doi.org/10.1016/j.bcp.2011.08.010
  26. Sarkola, T., Iles, M. R., Kohlenberg-Mueller, K. and Eriksson, C. J. (2002) Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole. Alcohol. Clin. Exp. Res. 26, 239-245. https://doi.org/10.1111/j.1530-0277.2002.tb02530.x
  27. Satoh, T., Enokido, Y., Aoshima, H., Uchiyama, Y. and Hatanaka, H. (1997) Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. J. Neurosci. Res. 50, 413-420. https://doi.org/10.1002/(SICI)1097-4547(19971101)50:3<413::AID-JNR7>3.0.CO;2-L
  28. Shamsuddin, A. M., Vucenik, I. and Cole, K. E. (1997) IP6: a novel anti-cancer agent. Life Sci. 61, 343-354. https://doi.org/10.1016/S0024-3205(97)00092-1
  29. Vucenik, I. and Shamsuddin, A. M. (2006) Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 55, 109-125. https://doi.org/10.1207/s15327914nc5502_1
  30. Vucenik, I., Tomazic, V. J., Fabian, D. and Shamsuddin, A. M. (1992) Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and metastatic fibrosarcoma, a pilot study. Cancer Lett. 65, 9-13. https://doi.org/10.1016/0304-3835(92)90206-B
  31. Wang, H. and Joseph, J. A. (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  32. Wu, H., Cai, P., Clemens, D. L., Jerrells, T. R., Ansari, G. A. and Kaphalia, B. S. (2006) Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: role of nonoxidative metabolism. Toxicol. Appl. Pharmacol. 216, 238-247. https://doi.org/10.1016/j.taap.2006.05.003

Cited by

  1. 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A, two diterpenes isolated from Euphorbia helioscopia suppress microglia activation vol.612, 2016, https://doi.org/10.1016/j.neulet.2015.12.010
  2. Americanin B protects cultured human keratinocytes against oxidative stress by exerting antioxidant effects vol.50, pp.8, 2014, https://doi.org/10.1007/s11626-014-9759-9
  3. Short-chain C2 ceramide induces heme oxygenase-1 expression by upregulating AMPK and MAPK signaling pathways in rat primary astrocytes vol.94, 2016, https://doi.org/10.1016/j.neuint.2016.02.004
  4. IRAK1/4-Targeted Anti-Inflammatory Action of Caffeic Acid vol.2013, 2013, https://doi.org/10.1155/2013/518183
  5. β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-015-0355-z
  6. Protective effects of quercetin on nicotine induced oxidative stress in ‘HepG2 cells’ vol.27, pp.8, 2017, https://doi.org/10.1080/15376516.2017.1344338
  7. Alleviating effects of Opuntia ficus indica extracts on psychomotor alterations induced by ethanol in rats vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0280-4
  8. Anti-inflammatory Mechanism of Ginseng Saponin Metabolite Rh3 in Lipopolysaccharide-Stimulated Microglia: Critical Role of 5′-Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway vol.63, pp.13, 2015, https://doi.org/10.1021/jf506110y
  9. HPLC Polyphenolics Profile and H<sub>2</sub>O<sub>2</sub> Induced Cytoprotective Effect of <i>Salacia oblonga</i> Extracts on Human Lymphocytes vol.06, pp.01, 2016, https://doi.org/10.4236/abc.2016.61003
  10. The anti-inflammatory role of tissue inhibitor of metalloproteinase-2 in lipopolysaccharide-stimulated microglia vol.11, pp.1, 2014, https://doi.org/10.1186/1742-2094-11-116
  11. Anti-Inflammatory Effects of α-Galactosylceramide Analogs in Activated Microglia: Involvement of the p38 MAPK Signaling Pathway vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0087030
  12. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract vol.146, 2015, https://doi.org/10.1016/j.jphotobiol.2015.02.008
  13. Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways vol.21, pp.5, 2013, https://doi.org/10.4062/biomolther.2013.069
  14. Evaluation of Inhibitory Effects of Caffeic acid and Quercetin on Human Liver Cytochrome P450 Activities vol.28, pp.12, 2014, https://doi.org/10.1002/ptr.5220
  15. Rapid Diagnosis of Metabolic Disorders Based on Achiral Separation by Gas Chromatography with a Dual Column vol.48, pp.2, 2015, https://doi.org/10.1080/00032719.2014.938348
  16. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25) Exposed to Low Concentrations of Ethanol vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018725
  17. Acid-Base and Antioxidant Properties of Complexes of Phytic Acid-Xymedone in Solution vol.49, pp.1, 2015, https://doi.org/10.1007/s11094-015-1214-z
  18. Oxidative damage and hepatotoxicity associated with deltamethrin in rats: The protective effects of Amaranthus spinosus seed extract vol.84, 2016, https://doi.org/10.1016/j.biopha.2016.10.010
  19. Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia vol.11, pp.2, 2016, https://doi.org/10.1007/s11481-016-9657-x
  20. Antioxidant and Hepatoprotective Effects of Procyanidins from Wild Grape (Vitis amurensis) Seeds in Ethanol-Induced Cells and Rats vol.17, pp.5, 2016, https://doi.org/10.3390/ijms17050758
  21. Sourdough bread: A contemporary cereal fermented product pp.01458892, 2019, https://doi.org/10.1111/jfpp.13883
  22. Matrix Metalloproteinase-8 Plays a Pivotal Role in Neuroinflammation by Modulating TNF-α Activation vol.193, pp.5, 2012, https://doi.org/10.4049/jimmunol.1303240
  23. Effectiveness of antioxidant treatments on cytochrome P450 2E1 (CYP2E1) activity after alcohol exposure in humans and in vitro models: A systematic review vol.24, pp.1, 2021, https://doi.org/10.1080/10942912.2021.1961801