초록
본 연구의 목적은 비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애의 유형을 분류하고 원인을 찾아내어 그에 따른 지도 방안을 제시하는 것이다. 이를 위해 그 동안 연구되어 온 선행 연구의 결과와 수학교과서와 지도서, TIMSS 2003, 2007 등 여러 자료들을 분석하여 비와 비율 검사지를 제작하였다. 이를 위해 서울시내 초등학교 5학년 학생 138명을 여러 지역을 고려하여 선정한 후 설문 및 면담을 하여 인식론적인 장애를 검사하였다. 검사지 결과 분석 및 면담 내용을 토대로 인식론적 장애의 유형을 크게 용어, 계산, 표현과 관련된 것의 세 가지로 분류되었다. 그리고 각 유형에 따른 원인과 지도 방안을 제시하고 비와 비율의 효과적인 학습을 위한 제언을 하였다.
Many obstacles have been found in the learning of ratio and rate. The types of epistemological obstacles concern 'terms', 'calculations' and 'symbols'. It is important to identify the epistemological obstacles that students must overcome to understand the learning of ratio and rate. In this respect, the present study attempts to figure out what types of epistemological obstacles emerge in the area of learning ratio and rate and where these obstacles are generated from and to search for the teaching implications to correct them. The research questions were to analyze this concepts as follow; A. How do elementary students show the epistemological obstacles in ratio and rate? B. What is the reason for epistemological obstacles of elementary students in the learning of ratio and rate? C. What are the teaching implications to correct epistemological obstacles of elementary students in the learning of ratio and rate? In order to analyze the epistemological obstacles of elementary students in the learning of ratio and rate, the present study was conducted in five different elementary schools in Seoul. The test was administered to 138 fifth grade students who learned ratio and rate. The test was performed three times during six weeks. In case of necessity, additional interviews were carried out for thorough examination. The final results of the study are summarized as follows. The epistemological obstacles in the learning of ratio and rate can be categorized into three types. The first type concerns 'terms'. The reason is that realistic context is not sufficient, a definition is too formal. The second type of epistemological obstacle concerns 'calculations'. This second obstacle is caused by the lack of multiplication thought in mathematical problems. As a result of this study, the following conclusions have been made. The epistemological obstacles cannot be helped. They are part of the natural learning process. It is necessary to understand the reasons and search for the teaching implications. Every teacher must try to develop the teaching method.