DOI QR코드

DOI QR Code

3D Reconstruction and Self-calibration based on Binocular Stereo Vision

스테레오 영상을 이용한 자기보정 및 3차원 형상 구현

  • Hou, Rongrong (Dept. of Mechanical Engineering, Graduate School, Korea University of Tech. and Edu.) ;
  • Jeong, Kyung-Seok (School of Mechanical Engineering, Korea University of Tech. and Edu.)
  • 후영영 (한국기술교육대학교 대학원 기계공학부) ;
  • 정경석 (한국기술교육대학교 기계공학부)
  • Received : 2012.07.02
  • Accepted : 2012.09.06
  • Published : 2012.09.30

Abstract

A 3D reconstruction technique from stereo images that requires minimal intervention from the user has been developed. The reconstruction problem consists of three steps of estimating specific geometry groups. The first step is estimating the epipolar geometry that exists between the stereo image pairs which includes feature matching in both images. The second is estimating the affine geometry, a process to find a special plane in the projective space by means of vanishing points. The third step, which includes camera self-calibration, is obtaining a metric geometry from which a 3D model of the scene could be obtained. The major advantage of this method is that the stereo images do not need to be calibrated for reconstruction. The results of camera calibration and reconstruction have shown the possibility of obtaining a 3D model directly from features in the images.

스테레오 영상으로부터 3차원 형상을 구현함에 있어 사용자의 개입을 최소로 필요로 하는 기법을 개발하였다. 형상구현은 특정 기하학 그룹을 평가하는 3단계로 이루어진다. 1단계는 영상에 존재하는 epipolar 기하 평가로 각 영상에서의 특정점들을 일치시킨다. 2단계는 소실점 방법을 이용하여 투영공간에서 특정평면을 찾는 affine 기하 평가이다. 3단계에서는 카메라의 자기보정을 포함하며 3차원 모델이 얻어질 수 있는 계량 기하 변수를 구한다. 이 방법의 장점은 형상구현을 위해 스테레오 영상을 보정할 필요가 없는 것으로, 그 구현가능성을 실증하였다.

Keywords

References

  1. B. Han, C. Paulson, D. Wu, "3D dense reconstruction from 2D video sequence via 3D geometric segmentation", J. of Visual Communication and Image Representation, vol. 22, Issue 5, pp. 421-431, 2011. https://doi.org/10.1016/j.jvcir.2011.03.006
  2. G. Zheng, S. Gollmer, S. Schumann, X. Dong, T. Feilkas, M. A.G. Ballester, "A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images, Medical Image Analysis, vol. 13, Issue 6, pp. 883-899, 2009. https://doi.org/10.1016/j.media.2008.12.003
  3. R. I. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2000.
  4. G. Trombettoni, M. Wilczkowiak, "Gpdof - a Fast Algorithm to Decompose under-constrained Geometric Constraint Systems: Application to 3d Modeling", Int. J. Comput. Geometry Appl., vol. 16(5-6), pp. 479-512, 2006. https://doi.org/10.1142/S0218195906002154
  5. R. Szeliski and P. H. S. Torr, "Geometrically Constrained Structure from Motion: Points on Planes" Reinhard Koch and Luc Van Gool Eds., SMILE '98, LNCS 1506, pp. 171-186, 1998.
  6. W. Zhang and J. Kosecka, "Extraction, matching and pose recovery based on dominant rectangular structures", High Level Knowledge in Vision Workshop, International Conference on Computer Vision, Nice France, 2003.
  7. R. Hartley and J. L. Mundy, "The relationship between photogrammetry and computer vision", Proc. SPIE Vol. 1944, pp. 92-105, Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision, Eamon B. Barrett; David M. McKeown; Eds. 1993.
  8. T. Werner and A. Zisserman, "New techniques for automated architecture reconstruction from photographs", Proc. 7th Eur. Conf. Comput. Vision, vol. 2, pp. 541 -.555. 2002a.
  9. C. Baillard and A. Zisserman, A, "Automatic Reconstruction of Piecewise Planar Models from Multiple Views", Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 1999.
  10. P. Gargallo, E. Prados, P. Sturm, "Minimizing the Reprojection Error in Surface Reconstruction from Images", IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007.
  11. G. Xu, J. Terai and H. Shu, "A linear algorithm for Camera Self-Calibration, Motion and Structure Recovery for Multi-Planar Scenes from Two Perspective Images, http://research.microsoft.com/apps/pubs/default.aspx?id=68822, 2000.
  12. R. Hartley, "Euclidean Reconstruction from Uncalibrated Views", in J. L. Mundy, A. Zisserman, and D. Forsyth Eds., 'Applications of Invariance in Computer Vision', volume 825 of Lecture Notes in Computer Science, pp. 237-256, Springer-Verlag, 2004.
  13. H. Sekkati and A. Mitiche, "A variational method for the recovery of dense 3D structure from motion", Robotics and Autonomous Systems, vol. 55, Issue 7, pp. 597-607, 2007. https://doi.org/10.1016/j.robot.2006.11.006
  14. M. Lourkis and R. Deriche, "Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters", INRIA report No. 3911, 2000.
  15. H. P. Trivedi, "Can multiple views make up for lack of camera registration", Image and Vision Computing, 6(1): 29-32, 1988. https://doi.org/10.1016/0262-8856(88)90042-X