DOI QR코드

DOI QR Code

Antimicrobial Effect of Ursolic Acid and Oleanolic Acid against Methicillin-Resistant Staphylococcus aureus

Ursolic Acid와 Oleanolic Acid의 메티실린 저항성 Staphylococcus aureus에 대한 항균작용

  • Kim, Saeng-Gon (Department of Human Biology, School of Dentistry, Chosun University) ;
  • Kim, Min-Jung (Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Jin, Dong-Chun (Department of Veterinary Medicine, College of Agriculture, Yanbian University) ;
  • Park, Soon-Nang (Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Cho, Eu-Gene (Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Freire, Marcelo Oliveira (Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University) ;
  • Jang, Sook-Jin (Department of Laboratory Medicine, Chosun University Medical School) ;
  • Park, Young-Jin (Department of Laboratory Medicine, Chosun University Medical School) ;
  • Kook, Joong-Ki (Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University)
  • 김생곤 (조선대학교 치과대학 인체생물학교실) ;
  • 김민정 (조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행) ;
  • 김동춘 (중국 연변대학교 농학원 동물의학교실) ;
  • 박순낭 (조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행) ;
  • 조유진 (조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행) ;
  • 마르셀로 올리베이라 프레리 (미국 하버드 치의학대학원 구강내과, 감염 및 면역학교실) ;
  • 장숙진 (조선대학교 의과대학 진단검사의학과) ;
  • 박영진 (조선대학교 의과대학 진단검사의학과) ;
  • 국중기 (조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행)
  • Received : 2012.07.13
  • Accepted : 2012.09.07
  • Published : 2012.09.30

Abstract

The antimicrobial activity of ursolic acid (UA) and oleanolic acid (OA), both triterpenoid compounds, against methicillin-resistant Staphylococcus aureus (MRSA) is controversial. We examined the antimicrobial effects of UA and OA against 19 strains of MRSA isolated from Koreans by determining minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The data showed that the methicillin-sensitive strain S. aureus KCTC $1621^T$ was more resistant to UA and OA than that of the MRSA strains. The MBC values of UA and OA against MRSA had broad ranges; 4 to 32 ${\mu}g/ml$ and 16 to >256 ${\mu}g/ml$, respectively. It was difficult to understand the different antimicrobial activities of UA and OA among the MRSA strains, because UA and OA antimicrobial mechanisms are unknown. These results indicate that the antimicrobial effects of UA and OA against MRSA are dependent on resistance to UA and OA in each strain.

Ursolic acid (UA)와 oleanolic acid (OA)들의 메티실린 저항성 Staphylococcus aureus (MRSA)에 대한 항균 활성에는 상반된 의견들이 있다. 본 연구는 한국인으로부터 분리된 19개의 MRSA에 대한 UA와 OA의 항균 활성을 최소성장억제농도 및 최소살균농도를 측정하여 조사하였다. 연구 결과, 메티실린 감수성 균주인 S. aureus KCTC $1621^T$가 MRSA 균주들보다 UA와 OA에 대한 저항성이 컸다. UA와 OA 각각의 MRSA 19 균주에 대한 최소살균농도는 4-32 ${\mu}g/ml$와 16->256 ${\mu}g/ml$로 넓은 범위를 보였다. UA와 OA에 대한 균주에 따른 항균 작용의 차이는 UA와 OA의 항균 기전이 밝혀져 있지 않기 때문에 이해하기 힘들다. 이러한 결과들은 MRSA에 대한 UA와 OA의 항균 효과는 균주들 간의 UA와 OA에 대한 저항 능력에 의한 것임을 시사한다.

Keywords

References

  1. Barber, M. 1961. Methicillin-resistant staphylococci. J. Clin. Pathol. 14, 385-393. https://doi.org/10.1136/jcp.14.4.385
  2. Fontanay, S., Grare, M., Mayer, J., Finance, C., and Duval, R.E. 2008. Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J. Ethnopharmacol. 120, 272-276. https://doi.org/10.1016/j.jep.2008.09.001
  3. Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T., and Tsuchiya, T. 2007. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147-1149. https://doi.org/10.1248/bpb.30.1147
  4. Jovel, E.M., Zhou, X.L., Ming, D.S., Wahbe, T.R., and Towers, G.H. 2007. Bioactivity-guided isolation of the active compounds from Rosa nutkana and quantitative analysis of ascorbic acid by HPLC. Can. J. Physiol. Pharmacol. 85, 865-871. https://doi.org/10.1139/Y07-053
  5. Kim, M.J., Kim, C.S., Ha, W.H., Kim, B.H., Lim, Y.K., Park, S.N., Cho, Y.J., Kim, M., Ko, J.H., Kwon, S.S., and et al. 2010. Antimicrobial effects of oleanolic acid against Streptococcus mutans and Streptococcus sobrinus isolated from a Korean population. Int. J. Oral Biol. 35, 191-195.
  6. Kim, M.J., Kim, C.S., Park, J.Y., Lim, Y.K., Park, S.N., Ahn, S.J., Jin, D.C., Kim, T.H., and Kook, J.K. 2011. Antimicrobial effects of ursolic acid against mutans streptococci isolated from Koreans. Int. J. Oral Biol. 36, 7-11.
  7. Kock, R., Becker, K., Cookson, B., van Gemert-Pijnen, J.E., Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R.L., Struelens, M.J., and et al. 2010. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro. Surveill. 15, 19688.
  8. Kreisel, K.M., Johnson, J.K., Stine, O.C., Shardell, M.D., Perencevich, E.N., Lesse, A.J., Gordin, F.M., Climo, M.W., and Roghmann, M.C. 2010. Illicit drug use and risk for USA300 methicillin-resistant Staphylococcus aureus infections with bacteremia. Emerg. Infect. Dis. 16, 1419-1427. https://doi.org/10.3201/eid1609.091802
  9. Liu, J. 1995. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57-68. https://doi.org/10.1016/0378-8741(95)90032-2
  10. Morell, E.A. and Balkin, D.M. 2010. Methicillin-resistant Staphylococcus aureus : a pervasive pathogen highlights the need for new antimicrobial development. Yale J. Biol. Med. 83, 223-233.
  11. Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., and Watanabe, S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 29, 240-244.
  12. National Committee for Clinical Laboratory Standards. 2000. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard M7-A5. NCCLS, Wayne, Pennsylvania, USA.
  13. Szczuka, E., Szumała-Kakol, A., Siuda, A., and Kaznowski, A. 2010. Clonal analysis of Staphylococcus aureus strains isolated in obstetric-gynaecological hospital. Pol. J. Microbiol. 59, 161-165.
  14. Ubukata, K., Nonoguchi, R., Matsuhashi, M., and Konno, M. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171, 2882-2885. https://doi.org/10.1128/jb.171.5.2882-2885.1989
  15. Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., and Schempp, C.M. 2007. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine 14, 508-516. https://doi.org/10.1016/j.phymed.2006.12.013
  16. Winstanley, T.G., Eggington, R., and Spencer, R.C. 1993. Selective medium for MRSA. J. Clin. Pathol. 46, 1140.
  17. Zheng, C.J., Sohn, M.J., Kim, K.Y., Yu, H.E., and Kim, W.G. 2008. Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii. J. Agric. Food Chem. 56, 11752-11756. https://doi.org/10.1021/jf802832w

Cited by

  1. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems vol.1838, pp.10, 2014, https://doi.org/10.1016/j.bbamem.2014.05.027
  2. Ursolic Acid—A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities vol.20, pp.12, 2015, https://doi.org/10.3390/molecules201119721
  3. Antibiotic adjuvants from Buxus sempervirens to promote effective treatment of drug-resistant Staphylococcus aureus biofilms vol.6, pp.97, 2016, https://doi.org/10.1039/C6RA21137B
  4. Inhibitory effect of SeO2 on cell growth of methicillin-resistant Staphylococcus aureus vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5062
  5. Anti-proliferative and antibacterialin vitroevaluation of the polyurethane nanostructures incorporating pentacyclic triterpenes vol.54, pp.11, 2016, https://doi.org/10.1080/13880209.2016.1180538
  6. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane—Langmuir monolayer approach vol.1848, pp.2, 2015, https://doi.org/10.1016/j.bbamem.2014.10.024
  7. Incorporation of Pentacyclic Triterpenes into Mitochondrial Membrane—Studies on the Interactions in Model 2D Lipid Systems vol.118, pp.45, 2014, https://doi.org/10.1021/jp508743j
  8. Antagonistic effects of α-tocopherol and ursolic acid on model bacterial membranes vol.1848, pp.10, 2015, https://doi.org/10.1016/j.bbamem.2015.05.009
  9. Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: a review pp.1572-980X, 2018, https://doi.org/10.1007/s11101-018-9564-2
  10. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains vol.48, pp.6, 2012, https://doi.org/10.4103/0253-7613.194851
  11. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR) vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3663315
  12. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci vol.13, pp.11, 2012, https://doi.org/10.3390/pharmaceutics13111976
  13. Antimicrobial Effect of Phytochemicals from Edible Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9112089