DOI QR코드

DOI QR Code

Biosynthesis of Copolyesters Consisting of 3-Hydroxyvalerate and Medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 Strain

Pseudomonas aeruginosa P-5 균주로부터 3-Hydroxyvalerate와 Medium-chain-length 3-hydroxyalkanoates로 구성된 공중합체의 생합성

  • Woo, Sang-Hee (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Kim, Jae-Hee (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Ni, Yu-Yang (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Rhee, Young-Ha (Department of Microbiology and Molecular Biology, Chungnam National University)
  • 우상희 (충남대학교 미생물.분자생명과학과) ;
  • 김재희 (충남대학교 미생물.분자생명과학과) ;
  • 예우양 (충남대학교 미생물.분자생명과학과) ;
  • 이영하 (충남대학교 미생물.분자생명과학과)
  • Received : 2012.07.31
  • Accepted : 2012.09.13
  • Published : 2012.09.30

Abstract

A bacterial strain capable of synthesizing polyhydroxyalkanoates (PHAs) with an unusual pattern of monomer units was isolated from activated sludge using the enrichment culture technique. The organism, identified as Pseudomonas aeruginosa P-5, produced polyesters consisting of 3-hydroxyvalerate and medium-chain-length (MCL) 3-hydroxyalkanoate monomer units when $C_{-odd}$ alkanoic acids such as nonanoic acid and heptanoic acid were fed as the sole carbon source. Solvent fractionation experiments using chloroform and hexane revealed that the 3-hydroxyalkanoate monomer units in these polyesters were copolymerized. The molar concentration of 3-hydroxyvalerate in the polyesters produced were significantly elevated up to 26 mol% by adding 1.0 g/L valeric acid as the cosubstrate. These copolyesters were sticky with low degrees of crystallinity. The PHA synthase genes were cloned, and the deduced amino acid sequences were determined. P. aeruginosa P-5 possessed genes encoding MCL-PHA synthases (PhaC1 and PhaC2) but lacked the short-chain-length PHA synthase gene, suggesting that the MCL-PHA synthases from P. aeruginosa P-5 are uniquely active for polymerizing (R)-3-hydroxyvaleryl-CoA as well as MCL (R)-3-hydroxyacyl-CoAs.

활성슬러지로부터 특이한 조성의 polyhydroxyalkanoates (PHAs)를 생합성하는 Pseudomonas aeruginosa P-5를 분리하였다. 이 균주는 nonanoic acid나 heptanoic acid와 같은 홀수개의 탄소수를 가지는 지방산을 단일 탄소원으로 공급해주었을 경우, 3-hydroxyvalerate (3HV)와 medium-chain-length (MCL) 3-hydroxyalkanoates 단위체로 이루어진 공중합체를 생산하였다. 공중합체 내 3HV의 함량은 valeric acid와 같은 보조기질을 공급함으로써 증가시킬 수 있었으며, 2 g/L nonanoic acid와 1 g/L valeric acid로 이루어진 혼합기질로부터 3HV의 함량이 26 mol%에 달하는 공중합체를 얻을 수 있었다. 이러한 공중합체는 결정성이 매우 낮아 점착성 고분자로서의 성질을 보였다. P. aeruginosa P-5 균주는 MCL-PHA synthase 유전자(phaC1, phaC2)를 가지고 있는 반면에 SCL-PHA synthase 유전자는 결여되어 있는 것으로 나타났다. 따라서 P. aeruginosa P-5 균주의 MCL-PHA synthase는 MCL(R)-3-hydroxyacyl-CoAs 뿐만 아니라 (R)-3-hydroxyvaleryl-CoA를 기질로 인지하는 특이한 기질특이성을 갖는 것으로 사료된다.

Keywords

References

  1. Chanprateep, S. 2010. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110, 621-632. https://doi.org/10.1016/j.jbiosc.2010.07.014
  2. Chen, J.Y., Liu, T., Zheng, Z., Chen, J.C., and Chen, G.Q. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237. https://doi.org/10.1111/j.1574-6968.2004.tb09538.x
  3. Chen, G.Q. and Wu, Q. 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26, 6565-6578. https://doi.org/10.1016/j.biomaterials.2005.04.036
  4. Chen, G.Q., Zhang, G., Park, S.J., and Lee, S.Y. 2001. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57, 50-55. https://doi.org/10.1007/s002530100755
  5. Choi, G.G., Kim, M.W., Kim, J.Y., and Rhee, Y.H. 2003. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 25, 665-670. https://doi.org/10.1023/A:1023437013044
  6. Chung, C.W., Kim, Y.S., Kim, Y.B., Bae, K.S., and Rhee, Y.H. 1999. Isolation of a Pseudomonas sp. strain exhibiting unusual behavior of poly(3-hydroxyalkanoates) biosynthesis and characterization of synthesized polyesters. J. Microbiol. Biotechnol. 9, 847-853.
  7. Chung, M.G. and Rhee, Y.H. 2012. Overexpression of the (R)-specific enoyl-CoA hydratase gene from Pseudomonas chlororaphis HS21 in Pseudomonas strains for the biosynthesis of polyhydroxyalkanoates of altered monomer composition. Biosci. Biotechnol. Biochem. 76, 613-616. https://doi.org/10.1271/bbb.110871
  8. Doi, Y., Kawaguchi, Y., Koyama, N., Nakamura, S., Hiramitsu, M., Yoshida, Y., and Kimura, H. 1992. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol. Rev. 103, 103-108. https://doi.org/10.1111/j.1574-6968.1992.tb05827.x
  9. Hang, X., Lin, Z., Chen, J., Wang, G., Hong, K., and Chen, G.-Q. 2002. Polyhydroxyalkanoate biosynthesis in Pseudomonas pseudoalcaligenes YS1. FEMS Microbiol. Lett. 212, 71-75. https://doi.org/10.1111/j.1574-6968.2002.tb11247.x
  10. Hazer, B. and Steinbüchel, A. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12. https://doi.org/10.1007/s00253-006-0732-8
  11. Kang, H.O., Chung, C.W., Kim, H.W., Kim, Y.B., and Rhee, Y.H. 2001. Cometabolic biosynthesis of copolyesters consisting of 3- hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191. https://doi.org/10.1023/A:1012214029825
  12. Kato, M., Fukui, T., and Doi, Y. 1996. Biosynthesis of polyester blends by Pseudomonas sp. 61-3 from alkanoic acids. Bull. Chem. Soc. Jpn. 69, 515-520. https://doi.org/10.1246/bcsj.69.515
  13. Kim, D.Y., Kim, H.W., Chung, M.G., and Rhee, Y.H. 2007. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol. 45, 87-97.
  14. Kim, Y.B., Kim, D.Y., and Rhee, Y.H. 1999. PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32, 6058-6064. https://doi.org/10.1021/ma982033t
  15. Kim, D.Y., Park, D.S., Kwon, S.B., Chung, M.G., Bae, K.S., Park, H.-Y., and Rhee, Y.H. 2009. Biosynthesis of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) copolyesters with a high molar fraction of 3- hydroxyvalerate by an insect-symbiotic Burkholderia sp. IS-01. J. Microbiol. 47, 651-656. https://doi.org/10.1007/s12275-009-0109-7
  16. Lee, S.H., Kim, J.H., Mishra, D., Ni, Y.-Y., and Rhee, Y.H. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102, 6159-6166. https://doi.org/10.1016/j.biortech.2011.03.025
  17. Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., and Doi, Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180, 6459-6467.
  18. Nitschke, M., Costa, S.G.V.A.O, and Contiero, J. 2011. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 46, 621-630. https://doi.org/10.1016/j.procbio.2010.12.012
  19. Qi, Q.S., Rehm, B.H.A., and Steinbüchel, A. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162. https://doi.org/10.1111/j.1574-6968.1997.tb12767.x
  20. Rai, R., Keshavarz, T., Roether, J.A., Boccaccini, A.R., and Roy, I. 2011. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mat. Sci. Eng. R. 72, 29-47. https://doi.org/10.1016/j.mser.2010.11.002
  21. Rho, J.K., Choi, M.H., Shim, J.H., Lee, S.Y., Woo, M.J., Ko, B.S., Chi, K.W., and Yoon, S.C. 2007. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCL and SCL-PHA. J. Microbiol. Biotechnol. 17, 2018-2026.
  22. Serafim, L.S., Lemos, P.C., Albuquerque, M.G.E., and Reis, M.A.M. 2008. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81, 615-628. https://doi.org/10.1007/s00253-008-1757-y
  23. Shen, X.W., Shi, Z.Y., Song, G., Li, Z.J., and Chen, G.Q. 2011. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Appl. Microbiol. Biotechnol. 91, 655-665. https://doi.org/10.1007/s00253-011-3274-7
  24. Solaiman, D.K.Y., Ashby, R.D., and Foglia, T.A. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53, 690-694. https://doi.org/10.1007/s002530000332
  25. Takase, K., Matsumoto, K., Taguchi, S., and Doi, Y. 2004. Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5, 480-485. https://doi.org/10.1021/bm034323+
  26. Tamura, K., Dudley, J., Nei, M., and Kumar, M. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Tanadchangsaeng, N., Tsuge, T., and Abe, H. 2010. Comonomer compositional distribution, physical properties, and enzymatic degradability of bacterial poly(3-hydroxybutyrate-co-3-hydroxy-4- methylvalerate) copolyesters. Biomacromolecules 11, 1615-1622. https://doi.org/10.1021/bm100267k
  28. Vendan, R.T., Yu, Y.J., Lee, S.H., and Rhee, Y.H. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559-565. https://doi.org/10.1007/s12275-010-0082-1

Cited by

  1. Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 vol.52, pp.4, 2016, https://doi.org/10.7845/kjm.2016.6055