DOI QR코드

DOI QR Code

Electrochemical Properties of Carbon/Manganese Oxide Composite Air Cathode for Lithium-Air Batteries

리튬-공기전지용 탄소/망간산화물 복합구조 공기극의 전기화학적 특성

  • Lee, Sun-Young (Center for Energy Convergence Research, Korea Institute of Science and Technology) ;
  • Cha, Eun-Hee (Department of Chemistry, Hoseo University) ;
  • Mho, Sun-Il (Division of Energy System Research, Ajou University) ;
  • Ju, Jeh-Beck (Department of Chemical Engineering, Hongik University) ;
  • Cho, Won-Il (Center for Energy Convergence Research, Korea Institute of Science and Technology)
  • 이선영 (한국과학기술연구원 에너지융합연구단) ;
  • 차은희 (호서대학교 화학과) ;
  • 모선일 (아주대학교 에너지시스템학부) ;
  • 주재백 (홍익대하교 화학공학과) ;
  • 조원일 (한국과학기술연구원 에너지융합연구단)
  • Received : 2012.08.20
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Carbon-supported manganese oxide composite were fabricated as an air cathode material for Li-air batteries by hydrothermal method. The composite materials of carbon and manganese oxide were investigated by the implementation of X-ray diffraction, FE-SEM and BET surface area measurer. The manganese oxide synthesized at $170^{\circ}C$ for 12 h has a rod like shape morphology with 40-50 nm long in size. A Lithium-air battery with coin type, of which electrodes are composed of cathode composite materials synthesized $170^{\circ}C$-12 h and lithium metal anode, reveals its first discharge capacity of 3,852 mAh/g and four discharge-charge cycles.

리튬-공기전지 공기극으로서 탄소 상에 직접 수열합성법으로 망간산화물을 생성한 탄소지지 망간산화물 촉매를 합성하였다. 각 수열합성 조건에 따라서 만들어진 복합체에 대한 XRD, FE-SEM 분석을 통하여, 복합체의 결정구조, 형태, 크기 등을 확인하였는데 특히, 수열합성 온도 및 시간이 각각 $170^{\circ}C$, 12시간인 조건에서 만들어진 산화망간은 길이가 40-50 nm인 막대 모양을 갖는 것으로 나타났다. 합성된 복합체를 사용하여 만든 공기극과 리튬금속을 음극으로 하는 코인셀 형태의 리튬-공기전지를 만들어 전기화학적 특성을 조사한 결과 초기 방전 용량이 3,852 mAh/g으로 높았고 충 방전 횟수가 4회 정도 발현되었다.

Keywords

References

  1. S. D. Beattie, D. M. Manolescu, and S. L. Blair, 'High- Capacity Lithium-Air Cathode' Electrochem. Soc., 156, A44 (2009). https://doi.org/10.1149/1.3005989
  2. K. M. Abraham and Z. Jiang, 'A Polymer Electrolyte- Based Rechargeable Lithium/Oxygen Battery' J. Electrochem. Soc., 143, 1 (1996). https://doi.org/10.1149/1.1836378
  3. B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, and K. M. Abreham, 'A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery' J. Electrochem. Soc., 157, A50 (2010). https://doi.org/10.1149/1.3256129
  4. A. Debart, A. J. Paterson, J. Bao, and P. G. Bruce, '${\alpha}$- $MnO_{2}$ Nanowire: A Catalyst for the $O_{2}$ Electrode in Rechargeable Lithium Batteries' Angew, Chem., Int. Ed., 47, 4521 (2008). https://doi.org/10.1002/anie.200705648
  5. J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstin, A. Driedger, and D. Foster, 'Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/ Oxygen Battery' J. Electrochem. Soc., 150, A1351 (2003). https://doi.org/10.1149/1.1606454
  6. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, 'Lithium-Air Battery: Promise and Challenges' J. Phys. Chem. Lett., 1, 2193 (2010). https://doi.org/10.1021/jz1005384
  7. C. K. Park, S. B. Park, S. Y. Lee, H. Lee, H. Jang, and W. I. Cho, 'Electrochemical Performances of Lithium- Air Cell with Carbon Materials' Bull. Korean Chem. Soc. 31, 3221 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3221
  8. C. Trana, X. Q. Yang, and D. Qu, 'Investigation of the Gas-Diffusion-Electrode used as Lithium/Air Cathode in Non-aqueous Electrolyte and the importance of Carbon Materials Porosity' J. Power Source, 195, 2057 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.012
  9. H. Cheng and K. Scott, 'Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium-Air Batteries' J. Power Sources, 195, 1370 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.030
  10. V. M. B. Crisostomo, J. K. Nagala, S. Alia, A. Dobley, C. Morein, C. H. Chen, X. Shen, and S. L. Suib, 'New synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite' Chem. Mater., 19, 1832 (2007). https://doi.org/10.1021/cm062871z
  11. A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, 'An $O_{2}$Cathode for Rechargeable Lithium Batteries: The effect of a catalyst' J. Power Sources, 174, 1177 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.180
  12. Y. C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, and Y. Shao-Horn, 'The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Lithium Batteries' Electrochem. Solid-State Lett., 13, 20127 (2010).
  13. M. S. EI-Deab and T. Oshaka, 'Electrosynthesis of Single-Crystalline MnOOH Nanorodes onto Pt Electrodes: Electrocatalytic Activity toward Reduction of Oxygen' J. Electrochem. Soc. 155, D14 (2008). https://doi.org/10.1149/1.2799584
  14. W. Chen, N. Wang, L. Liu, Y. R. Cui, X. Cao, Q. J. Chen, and L. Guo, 'Facile Synthesis of Manganite Nanowires: Phase Transitions and their Electrocatalysis Performance' Nanotechnology, 20, 445601 (2009). https://doi.org/10.1088/0957-4484/20/44/445601
  15. T. Ohsaka, L. Mao, K. Arihara, and T. sotomura, 'Bifunctional Catalytic Activity of Manganese Oxide toward $O_{2}$ Reduction : Novel insite into the Mechanism of Alkaline Air Electrode' J. Electrochem. Commun., 6, 273 (2004). https://doi.org/10.1016/j.elecom.2004.01.007
  16. Y. T. Wu and C. C. Hu, 'Aspect Ratio Controlled Growth of MnOOH in Mitures of $Mn_{3}O_{4}$ and MnOOH Single Crystal for Supercapacitors' Electrochem. Solid-State Lett., 8, A240 (2005). https://doi.org/10.1149/1.1874673
  17. S. M. Lee and S. N. Cho, 'Anisotropic Shape Control of Colloidal Inorganic Nanocrystals' J. Cheon, Adv. Mater., 15, 441 (2003). https://doi.org/10.1002/adma.200390102
  18. B. F. Jiao and P. G. Bruce, 'Mesoporous Crystalline ${\beta}$- $MnO_{2}$-a Reversible Positive Electrode for Rechargeable Lithium Batteries' Adv. matter., 19, 657 (2007). https://doi.org/10.1002/adma.200602499
  19. A. Kraytsberg and Y. Ein-Eli, 'Review on Li-Air Batteries-Opportunities, Limitations and Perspective' J. power source, 196, 886 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.031
  20. C. Fangyi and J. Chen, 'Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts' Chem. Soc. Rev., 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a
  21. T. Ogasawara, A. Debart, M. Holzapfel, and P. G. Bruce, 'Rechargeable $Li_{2}O_{2}$ Electrode for Lithium Batteries' J. Am. Chem. Soc., 128, 1390 (2006). https://doi.org/10.1021/ja056811q
  22. S. A. Freunberger, Y. Chen, Z. Peng, J. M., L. J. Hardwick, F. Bard, P. Novk, and P. G. Bruce, 'Reaction in the Rechargeable Lithium-$O_{2}$ Battery with Alkyl Carbonate Electrolyte' J. Am. Chem. Soc., 133, 8040 (2011). https://doi.org/10.1021/ja2021747