DOI QR코드

DOI QR Code

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide

다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구

  • Lee, Jong-Moon (Division of Energy System Research, Ajou University) ;
  • Kim, Joo-Seong (Division of Energy System Research, Ajou University) ;
  • Hong, Soon-Kie (Division of Energy System Research, Ajou University) ;
  • Lee, Jeong-Jin (Division of Energy System Research, Ajou University) ;
  • Ahn, Han-Cheol (Division of Energy System Research, Ajou University) ;
  • Cho, Won-Il (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Mho, Sun-Il (Division of Energy System Research, Ajou University)
  • 이종문 (아주대학교 에너지시스템학부) ;
  • 김주성 (아주대학교 에너지시스템학부) ;
  • 홍순기 (아주대학교 에너지시스템학부) ;
  • 이정진 (아주대학교 에너지시스템학부) ;
  • 안한철 (아주대학교 에너지시스템학부) ;
  • 조원일 (한국과학기술연구원 에너지융합연구단) ;
  • 모선일 (아주대학교 에너지시스템학부)
  • Received : 2012.08.02
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

리튬이온전지의 양극소재인 $LiMn_2O_4$를 다양한 모양과 크기의 망간산화물 및 망간수산화물 전구체를 사용해서 합성하였다. 첫 번째 단계로 수열합성법이나 침전법을 사용하여 ${\alpha}-MnO_2$, ${\beta}-MnO_2$, $Mn_3O_4$, amorphous $MnO_2$$Mn(OH)_2$ 등의 전구체를 합성하였고, 두 번째 단계로 이들 전구체로부터 고상법을 사용하여 다양한 형태의 $LiMn_2O_4$를 제조하였다. 합성된 $LiMn_2O_4$의 특성은 주사전자현미경과 XRD Rietveld구조분석을 통해 확인하고, Li coin cell로 조립하여 전극특성을 측정하였다. 500 nm크기의 팔면체(nano-octahedron) $LiMn_2O_4$가 1 C-rate와 50 C-rate에서 각각 107 mAh $g^{-1}$, 99 mAh $g^{-1}$의 높은 전지용량을 나타내며, 다양한 방전전류에서 가장 우수한 전기화학적 특성을 보인다. 3차원 팔면체 결정입자가 1차원 막대모양이나 2차원 판상모양의 다른 형태의 $LiMn_2O_4$보다 구조적 안정성도 우수한 것으로 평가된다. 또한 10 C-rate의 높은 전류로 500회 충 방전이 진행된 후에도 nano-octahedron $LiMn_2O_4$는 단지 5%의 용량감소(95% capacity retention)로 우수한 전극특성을 나타냈다.

Keywords

References

  1. J. B. Goodenough, 'Rechargeable batteries: challenges old and new' J. Solid State Electrochem., 16, 2019 (2012). https://doi.org/10.1007/s10008-012-1751-2
  2. J. W. Fergus, 'Recent developments in cathode materials for lithium ion batteries' J. Power Sources, 195, 939 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  3. D. H. Jang and S. M. Oh, 'Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V vs Li/ $Li_{x}Mn_{2}O_{4}$ rechargeable cells' J. Electrochem. Soc., 144, 10, 3342 (1997). https://doi.org/10.1149/1.1838016
  4. A. Yamada and M. Tanaka, 'Jahn-Teller structural phase transition around 280 K in Li$Mn_{2}O_{4}$' Mater. Res. Bull., 30, 6, 715 (1995). https://doi.org/10.1016/0025-5408(95)00048-8
  5. C. Y. Ouyang, S. Q. Shi, and M. S. Lei, 'Jahn-Teller distortion and electronic structure of Li$Mn_{2}O_{4}$' J. Alloys Compd., 474, 370 (2009). https://doi.org/10.1016/j.jallcom.2008.06.123
  6. Y. Xia and M. Yoshio, 'An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds' J. Electrochem. Soc., 143, 3, 825 (1996). https://doi.org/10.1149/1.1836544
  7. J. Reed and G. Ceder, 'Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation' Chem. Rev., 104, 10, 4513 (2004). https://doi.org/10.1021/cr020733x
  8. W. Yang, G. Zhang, J. Xie, L. Yang, and Q. Liu, 'A combustion method to prepare spinel phase Li$Mn_{2}O_{4}$ cathode materials for lithium-ion batteries' J. Power Sources, 81, 412 (1999). https://doi.org/10.1016/S0378-7753(99)00219-0
  9. T. Takada, H. Hayakawa, H. Enoki, E. Akiba, H. Slegr, I. Davidson, and J, Murray, 'Structure and electrochemical characterization of $Li_{1+x}Mn_{2-x}O_{4}$ spinels for rechargeable lithium batteries' J. Power Sources, 81, 505 (1999). https://doi.org/10.1016/S0378-7753(98)00225-0
  10. H. W. Chan, J. G. Duh, and S. R. Sheen, 'Li$Mn_{2}O_{4}$ cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries' J. Power Sources, 115, 110 (2003). https://doi.org/10.1016/S0378-7753(02)00616-X
  11. F. F. C. Bazito and R. M. Torresi, 'Cathodes for lithium ion batteries: the benefits of using nanostructured materials' J. Braz. Chem. Soc., 17, 4, 627 (2006). https://doi.org/10.1590/S0103-50532006000400002
  12. L. -F. Wang, C. -C. Ou, K. A. Striebel, and J.-S. Chen, 'Study of Mn dissolution from Li$Mn_{2}O_{4}$ spinel electrodes using rotating ring-disk collection experiments' J. Electrochem. Soc., 150, 7, A905 (2003). https://doi.org/10.1149/1.1577543
  13. J. Park, J. H. Seo, G. Plett, W. Lu, and A. M. Sastry, 'Numerical simulation of the effect of the dissolution of Li$Mn_{2}O_{4}$ particles on Li-ion battery performance' Electrochem. Solid- State Lett., 14, 2, A14 (2011). https://doi.org/10.1149/1.3516619
  14. S. Komaba, N. Kumagai, and Y. Kataoka, 'Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithiumion batteries' Electrochem. Acta, 47, 1229 (2002) https://doi.org/10.1016/S0013-4686(01)00847-7
  15. M. Hirayama, H. Ido, K. S. Kim, and W. S. Cho, 'Dynamic structural changes at Li$Mn_{2}O_{4}$/Electrolyte interface during lithium battery reaction' J. Am. Chem. Soc., 132, 43, 15268 (2010). https://doi.org/10.1021/ja105389t
  16. J. McBreen, 'The application of synchrotron techniques to the study of lithium-ion batteries' J. Solid State Electrochem., 13, 7, 1051 (2008).
  17. K. T. Lee and J. Cho, 'Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries' Nano Today, 6, 1, 28 (2011). https://doi.org/10.1016/j.nantod.2010.11.002
  18. R. Vacassy, H. Hofmann, N. Papageorgiou, and M. Gratzel, 'Influence of the particle size of electrode materials on intercalation rate and capacity of new electrodes' J. Power Sources, 81, 621 (1999). https://doi.org/10.1016/S0378-7753(99)00232-3
  19. H. -W. Lee, P. Muralidharan, and D. -K. Kim, 'Synthesis of one-dimensional spinel Li$Mn_{2}O_{4}$ nanostructures as a positive electrode in lithium ion battery' J. Korean Ceramic Soc., 48, 5, 379 (2011). https://doi.org/10.4191/kcers.2011.48.5.379
  20. Y. Yang, C. Xie, R. Ruffo, H. Peng, D.K. Kim, and Y. Cui, 'Single nanorod devices for battery diagnostics: a case study on Li$Mn_{2}O_{4}$.' Nano Lett., 9, 12, 4109 (2009). https://doi.org/10.1021/nl902315u
  21. H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, 'Ultrathin spinel Li$Mn_{2}O_{4}$ nanowires as high power cathode materials for Li-ion batteries' Nano Lett., 10, 10, 3852 (2010). https://doi.org/10.1021/nl101047f
  22. X. Zhang, Z. Xing, L. Wang, Y. Zhu, Q. Li, J. Liang, Y. Yu, T. Huang, K. Tang, Y. Qian, and X. Shen, 'Synthesis MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries' J. Mater. Chem., in press, (2012).
  23. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, 'Synthesis of single crystalline spinel Li$Mn_{2}O_{4}$ nanowires for a lithium ion battery with high power density' Nano Lett., 9, 3, 1045 (2009) https://doi.org/10.1021/nl803394v
  24. Y. Li, H. Tan, X. Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, and B.L. Su, 'Well shaped $Mn_{3}O_{4}$ nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties' Small, 7, 4, 475 (2011). https://doi.org/10.1002/smll.201001403
  25. S. C. Pang, S. F. Chin, and C. Y. Ling, 'Controlled synthesis of manganese dioxide nanostructures via a facile hydrothermal route' J. Nanomater., 2012, 1 (2012).
  26. X. Wang and Y. Li, 'Selected-control hydrothermal synthesis of alpha and beta $MnO_{2}$ single crystal nanowires' J. Am. Chem. Soc., 124, 12, 2880 (2002). https://doi.org/10.1021/ja0177105
  27. B. Tang, G. Wang, L. Zhuo, and J. Ge, 'Novel dandelionlike beta-manganese dioxide microstructures and their magnetic properties' Nanotechnology, 17, 4, 947 (2006). https://doi.org/10.1088/0957-4484/17/4/018
  28. Y. -J. Yang, E. -H. Liu, L. M. Li, Z. -Z. Huang, H. -J. Shen, and X. -X. Xiang, 'Nanostructured amorphous $MnO_{2}$ prepared by reaction of $KMnO_{4}$ with triethanolamine' J. Alloys Compd., 505, 2, 555 (2010). https://doi.org/10.1016/j.jallcom.2010.06.072

Cited by

  1. A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries vol.12, pp.12, 2012, https://doi.org/10.1021/nl303619s