DOI QR코드

DOI QR Code

Improved Cycling Ability of Si-SiO2-graphite Composite Battery Anode by Interfacial Stabilization

계면안정화를 통한 Si-SiO2-흑연 복합재 음극의 전기화학적 특성 개선

  • Min, Jeong-Hye (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Bae, Young-San (Dept. of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Sung-Su (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Song, Seung-Wan (Graduate School of Green Energy Technology, Chungnam National University)
  • 민정혜 (충남대학교 녹색에너지기술전문대학원) ;
  • 배영산 (충남대학교 정밀응용화학과) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원) ;
  • 송승완 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.06.27
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Structural volume change occurring on the Si-based anode battery materials during alloying/dealloying with lithium is noticed to be a major drawback responsible for a limited cycle life. Silicon monoxide has been reported to show relatively improved cycling performance compared to Si-containing materials for rechargeable lithium batteries, due to the structural buffering role of in-situ formed $Li_2O$ and lithium silicate during the reaction of silicon monoxide and lithium. Here we report improved cycling ability of interfacially stabilized Si-$SiO_2$-graphite composite anode using silane-based electrolyte additive for rechargeable lithium batteries, which includes low cost silicon dioxide for structural stabilization and graphite for enhanced conductivity.

Si계 음극소재는 리튬 삽입-탈착 중 일어나는 큰 구조적 부피변화와 입도변화로 인해 빠른 성능 퇴화가 일어나는 단점이 있다. 산화물 SiO 음극소재는 리튬과의 반응 중 비활성상인 $Li_2O$ 및 lithium silicate가 형성되어 Si의 부피변화를 완화시키는 버퍼 역할을 하므로 용량은 Si보다 적으나 개선된 용량 유지 특성을 보이는 것으로 알려져 있다. 본 연구에서는 Si의 부피변화 완화를 위하여 저가의 $SiO_2$와 입자간 전기전도성을 향상시키는 흑연을 구조안정화 기재로서 사용하여 Si-$SiO_2$-흑연 복합재 음극을 제작하였다. 구조안정화 뿐만 아니라 silane계 전해액 첨가제를 이용하여 Si-$SiO_2$-흑연 복합재 음극과 전해액간 계면을 안정화시킴으로써 용량 유지 특성이 개선되는 효과에 대해 보고하고자 한다.

Keywords

References

  1. U. Kasavajjula, C. Wang, and A. John Appleby, 'Nanoand bulk-silicon-based insertion anodes for lithium-ion secondary cells' J. Power Sources, 163, 1003 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  2. X. Wang, Z. Wen, and Yu Liu, 'A novel nanosized silicon-based composite as anode material for high performance lithium ion batteries' Electrochim. Acta, 56, 1512 (2011). https://doi.org/10.1016/j.electacta.2010.10.020
  3. C. H. Doh, H. M. Shin, D. H. Kim, Y. D. Jeong, S. I. Moon, B. S. Jin, H. S. Kim, K. W. Kim, D. H. Oh, and A. Veluchamy, 'A new composite anode, Fe-Cu-Si/C for lithium ion battery' J. Alloys Compd., 461, 321 (2008). https://doi.org/10.1016/j.jallcom.2007.06.125
  4. M. S. Park, S. Rajendran, Y. M. Kang, K. S. Han, and J. Y. Lee, 'Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries' J. Power Sources, 158, 650 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.052
  5. N. Jayaprakash, N. Kalaiselvi, and C. H. Doh, 'A new class of tailor-made $Fe_{0.92}Mn_{0.08}Si_{2}$ lithium battery anodes: Effect of composite and carbon coated $Fe_{0.92}Mn_{0.08}Si_{2}$ anodes' Intermetallics, 15, 442 (2007). https://doi.org/10.1016/j.intermet.2006.08.014
  6. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, 'Analysis of SiO anodes for lithiumion batteries' J. Electrochem. Soc., 152, A2089 (2005). https://doi.org/10.1149/1.2013210
  7. S.-W. Song and S.-W. Baek, 'Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries' Electrochem. Solid-State Lett., 12, A23 (2009). https://doi.org/10.1149/1.3028216
  8. Y.-G. Ryu, S. Lee, S. Mah, D. J. Lee, K. Kwon, S. Hwang, and S. Doo, 'Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives' J. Electrochem. Soc., 155, A583 (2008). https://doi.org/10.1149/1.2940310
  9. C. C. Nguyen, S.-W. Song, 'Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries' Electrochim. Acta, 55, 3026 (2010). https://doi.org/10.1016/j.electacta.2009.12.067
  10. Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, 'Xray diffraction patterns of graphite and turbostratic carbon' Carbon, 45, 1686 (2007). https://doi.org/10.1016/j.carbon.2007.03.038
  11. D. Han, J. D. Lorentzen, J. Weinberg-Wolf, and L. E. McNeil, 'Raman study of thin films of amorphous-tomicrocrystalline silicon prepared by hot-wire chemical vapor deposition' J. Appl. Phys., 94, 2930 (2003). https://doi.org/10.1063/1.1598298
  12. F. Tuinstra, J. L. Koenig, 'Raman Spectrum of graphite' J. Chem. Phys., 53, 1126 (1970). https://doi.org/10.1063/1.1674108
  13. D. E. Arreaga-Salas, A. K. Sra, K. Roodenko, Y. J. Chabal, and C. L. Hinkle, 'Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries' J. Phys. Chem C, 116, 9072 (2012) https://doi.org/10.1021/jp300787p
  14. B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, and L. Chen, 'Electrochemical reduction of nano-$SiO_{2}$ in hard carbon as anode material for lithium ion batteries' Electrochem. Comm., 10, 1876 (2008) https://doi.org/10.1016/j.elecom.2008.09.032
  15. N. B. Colthup, L. H. Daly, and S. E. Wiberley, "Introduction to Infrared and Raman Spectroscopy", Academic Press, New York, (1990).
  16. H. Choi, C. C. Nguyen, and S.-W. Song, 'Control of surface chemistry and electrochemical performance of carbon-coated silicon anode using silane-based selfassembly for rechargeable lithium batteries' Bull. Korean Chem. Soc., 31, 2519 (2010). https://doi.org/10.5012/bkcs.2010.31.9.2519
  17. G. V. Zhuang, P. N. Ross, 'Analysis of the chemical composition of the passive film on Li-ion battery anodes Using attentuated total reflection infrared spectroscopy' Electrochem. Solid State Lett., 6, A136 (2003). https://doi.org/10.1149/1.1575594
  18. G. V. Zhuang, H. Yang, J. Philip N. Ross, K. Xu, and T. R. Jow, 'Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate' Electrochem. Solid-State Lett., 9, A64 (2006). https://doi.org/10.1149/1.2142157
  19. D. Aurbach, M. L. Daroux, P. W. Faguy, and E. Yeager, 'Identification of surface films formed on lithium in propylene carbonate solutions' J. Electrochem. Soc., 134, 1611 (1987). https://doi.org/10.1149/1.2100722
  20. H. Yang, G. V. Zhuang, and P. N. Ross, Jr., 'Thermal stability of $LiPF_{6}$ salt and Li-ion battery electrolytes containing $LiPF_{6}$' J. Power Sources, 161, 573 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.058
  21. N. S. Zhai, M. W. Li, W. L. Wang, D. L. Zhang, and D. G. Xu, 'The application of the EIS in Li-ion batteries measurement' J. Physics, 48, 1157 (2006). https://doi.org/10.1088/1742-6596/48/1/215
  22. T. Piao, S. M. Park, C. H. Doh, and S. I. Moon, 'Intercalation of lithium Ions into graphite electrodes studied by AC impedance measurements' J. Electrochem. Soc., 146, 2794 (1999). https://doi.org/10.1149/1.1392010
  23. J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan, 'Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy' Electrochim. Acta, 56, 3981 (2011). https://doi.org/10.1016/j.electacta.2011.02.014