DOI QR코드

DOI QR Code

펄스레이저 증착법에 의한 Fe 희석된 Si 합금의 구조 및 자기 물성 연구

Structural and Magnetic Properties of Fe-Diluted Si Alloy Films by Pulsed-Laser Deposition

  • 투고 : 2012.07.10
  • 심사 : 2012.09.24
  • 발행 : 2012.09.30

초록

펄스레이저 증착법으로 P형 실리콘(100) 기판위에 증착한 Fe 희석된 Si 합금의 구조와 전기적 및 자기적 물성을 연구하였다. 합금시료에 대한 X-선 회절패턴에서 육방정계에 해당하는 FeSi, $Fe_3Si$, 및 $Fe_5Si_3$와 관련된 여러 개의 회절신호가 관측되었으며, 에너지분산분광 측정에 의한 시료내 Fe 원자의 함량은 1.25~6.49 atm, %로 나타났다. 또한, 온도변화에 따른 전기비저항 값의 측정으로부터 5.21 meV와 7.79 meV 두 개의 활성화에너지를 얻을 수 있었다. 절대온도 10 K에서 측정한 최대 자화는 약 100 emu/cc로 나타났으며, 3,000 Oe의 외부자기장하에서 온도의 함수로 측정한 자화 값으로부터 시료의 강자성 특성은 350 K까지도 유지됨을 알 수 있었다.

Fe-diluted Si alloys grown on p-type Si (100) substrates by pulsed-laser deposition method were studied for structural, electrical, and magnetic properties. The X-ray diffraction patterns for these alloy samples showed a few of peaks with cubic structures such as FeSi, $Fe_3Si$, and $Fe_4Si$. The Fe-composition in alloys are confirmed as Fe atomic percent about 1.25~6.49 % from energy dispersive spectroscopy measurement. The resistivity as a function of the reciprocal temperature was indicated an exponential increase with two activation energies of 5.21 and 7.79 meV. The maximum value of the magnetization at 10 K was about 100 emu/cc, and the ferromagnetism was also observed until 350 K from total magnetization as a function of temperature with applied magnetic field of 3,000 Oe.

키워드

참고문헌

  1. G. A. Prinz, Science 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001). https://doi.org/10.1126/science.1065389
  3. Y. Kim, J. Korean vacuum Soc. 16, 210 (2007). https://doi.org/10.5757/JKVS.2007.16.3.210
  4. H. T. Oh, T. G. Lee, D. W. Kim, Y. J. Park, I.-W. Park, and E. K. Kim, J. Korean vacuum Soc. 12, 269 (2003).
  5. S. W. Pak, J. Y. Suh, D. U. Lee, and E. K. Kim, J. Korean vacuum Soc. 20, 57 (2011) https://doi.org/10.5757/JKVS.2011.20.1.057
  6. K. H. J. Buschow, Handbook of Magnetic Materials, Vol 10, (North-Holland, Amsterdam, 1997) pp. 415-460.
  7. D. -S. Yang, J. Park, Y. -G. Yoo, K. -S. Kim, and S. -C. Yu, J. Magnet. 15, 108 (2010). https://doi.org/10.4283/JMAG.2010.15.3.108
  8. I. Rhee, J. Korean vacuum Soc. 4, 283 (1995).
  9. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
  10. N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young, and Z. Fisk, Nature Materials 3, 255 (2004). https://doi.org/10.1038/nmat1103
  11. Y. M. Kim, J. Korean vacuum. Soc. 16, 210 (2007). https://doi.org/10.5757/JKVS.2007.16.3.210
  12. Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002). https://doi.org/10.1126/science.1066348
  13. F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004). https://doi.org/10.1063/1.1775886
  14. J. Suh, S. Pak, K. S. Lee. H. Song, E. K. Kim, Y. Shon, Abstracts of 40th Winter Ann. Conf. of Korean vacuum Soc. 20, 184 (2011).
  15. JCPDS data base International center for Diffraction data, 1999, PCPDFWIN version 2.02.

피인용 문헌

  1. Ferromagnetic Properties of Fe-Implanted Si Followed by Thermal Annealing vol.28, pp.12, 2015, https://doi.org/10.1007/s10948-015-3207-2