DOI QR코드

DOI QR Code

Study on Effect of Various Underlayer on Bilayer Agglomerlation

다양한 하지층이 이중층의 응집현상에 미치는 영향에 관한 연구

  • Ha, J.H. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Ryu, D.H. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Im, H.W. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Jung, J.M. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Choi, H.J. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Hong, I.G. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Koh, J.H. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Koo, S.M. (Department of Electronic Materials Engineering, Kwangwoon Univ.) ;
  • Kamiko, M. (bInstitute of Industrial Science, The University of Tokyo) ;
  • Ha, J.G. (Department of Electronic Materials Engineering, Kwangwoon Univ.)
  • 하재호 (광운대학교 전자재료공학과) ;
  • 류동훈 (광운대학교 전자재료공학과) ;
  • 임현우 (광운대학교 전자재료공학과) ;
  • 정지민 (광운대학교 전자재료공학과) ;
  • 최호준 (광운대학교 전자재료공학과) ;
  • 홍인기 (광운대학교 전자재료공학과) ;
  • 고중혁 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 가미코 마사오 (동경대학교 생산기술연구소) ;
  • 하재근 (광운대학교 전자재료공학과)
  • Received : 2012.09.05
  • Accepted : 2012.09.24
  • Published : 2012.09.30

Abstract

We have deposited the bilayer consisted of the underlayer and the overlayer by using DC magnetron sputter on Single crystal MgO (001) substrate. This bilayer was fabricated at fixed annealing temperature and time. We have controlled agglomeration effect by changing of the bilayer thickness. Finally, we have made the self-organization and nano-structured film. In this processing, we have made nano-dot which consists of the underlayer and the overlayer, unlike the existing method called the agglomeration effect in the single layer. The underlayer has deposited using Ti, Cr and Co. And the overlayer has deposited with Ag. Through the analysis of Atomic force microscopy (AFM), the microstructure of underlayer is observed by AFM to confirm the formation of nano-dot. As the nano-dot through above processing, we have found that the nano-dot has the different shape. As a result, when we manufactured nano-dot through the agglomeration effect of bi-layer, the best matching material is Ti for underlayer. And also, we have found that MgO/Ti/Ag samples have been grown expitaxially toward the direction of MgO (001) by X-ray Diffraction analysis.

단결정 MgO (001) 기판에 DC 마그네트론 스퍼터로 하지층과 상지층으로 구성된 이중층을 증착, 열처리 온도와 시간을 고정시키고 이중층의 두께를 변화시켜 응집현상을 제어하여 자기구조화, 나노 구조화된 박막을 제작하였다. 진행한 실험에선 기존에 연구되었던 단층에서의 응집현상이 아닌 하지층과 상지층으로 구성된 이중층의 응집현상으로 나노 점을 형성하였다. 하지층은 Ti, Cr, Co 그리고 상지층은 Ag를 증착하였다. Atomic force microscopy를 통하여 하지층의 물질에 따라 나노 점의 형성 여부가 관찰되었고 형성된 나노 점의 형상이 다르게 나타난 것을 확인하였다. 결과적으로 이중층의 응집현상을 이용하여 나노 점을 제작할 때 가장 적합한 하지층의 물질은 Ti로 확인하였다. 또한 Ti/Ag 시료는 X-ray Diffraction 분광법을 통하여 Ag는 기판으로 사용된 MgO의 (001) 방향을 따라서 에피택셜하게 성장한 것을 확인하였다.

Keywords

References

  1. G. Schmid, Chem. Rev. 92, 1709 (1992). https://doi.org/10.1021/cr00016a002
  2. Zhang, J. Nanopart. Res. 5, 323 (2003). https://doi.org/10.1023/A:1025520116015
  3. W. Fritzsche and T. A. Taton, Nanotechnology. 14, R63 (2003). https://doi.org/10.1088/0957-4484/14/12/R01
  4. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000). https://doi.org/10.1126/science.287.5460.1989
  5. H.-M. So, J. Kim, W. S. Yun, J. W. Park, J. -J. Kim, D. -J. Won, Y. Kang, and C. Lee, Phys E. 18, 243 (2003). https://doi.org/10.1016/S1386-9477(02)00996-7
  6. Z. Wang and G. Chumanov, Adv. Mater. 15, 1285 (2003). https://doi.org/10.1002/adma.200304989
  7. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kaell, Nano Lett. 5, 1065 (2005). https://doi.org/10.1021/nl0505492
  8. J. Lian, L. Wang, X. Sun, Q. Yu, and R. C. Ewing, Nano Lett. 6, 1047 (2006). https://doi.org/10.1021/nl060492z
  9. D. J. Srolovitz and S. A. Safran, J. Appl. Phys. 60, 247 (1986). https://doi.org/10.1063/1.337689
  10. D. J. Srolovitz and S. A. Safran, J. Appl. Phys. 60, 255 (1986). https://doi.org/10.1063/1.337691
  11. K. T. Miller, F. F. Lange, and D. B. Marshall, J. Mater. Res. 5, 151 (1990). https://doi.org/10.1557/JMR.1990.0151
  12. T. P. Nolan and R. Sinclair, J. Appl. Phys. 71, 720 (1992). https://doi.org/10.1063/1.351333
  13. D. J. Srolovitz and M. G. Goldiner, JOM 47, 31 (1995).
  14. F. Genin, W. Mullins, and P. Wynblatt, Acta Metall. Mater. 41, 3541 (1993). https://doi.org/10.1016/0956-7151(93)90234-J
  15. D. J. Srolovitz, W. Yang, and M. G. Goldiner, J. Mate. 403, 3 (1996).
  16. M. L. Gimpl, A. D. McMaster, and N. Fuschillo, J. Appl. Phys. 35, 3572 (1964). https://doi.org/10.1063/1.1713272
  17. W. W. Kane, J. P. Spratt, and L. W. Herschinger, J. Appl. Phys. 37, 2085 (1966). https://doi.org/10.1063/1.1708676
  18. R. E. Hummel, R. T. DeHoff, S. Matts-Goho, and W. M. Goho, Thin Solid Films 78, 1 (1981). https://doi.org/10.1016/0040-6090(81)90412-0
  19. S. Y. Lee, R. E. Hummel, and R. T. DeHoff, Thin Solid Films 149, 29-48 (1987). https://doi.org/10.1016/0040-6090(87)90246-X
  20. Y. K. Chao, S. K. Kurinec, I. Toor, H. Shillingford, and P. H. Holloway, J. Vac. Sci. Technol. A5, 337 (1987).
  21. A. E. B. Presland, G. L. Price, and D. L. Trimm, Prog. Surf. Sci. 3, 63 (1973).
  22. S. K. Sharma and J. Spitz, Thin Solid Films 65, 339 (1980). https://doi.org/10.1016/0040-6090(80)90244-8
  23. S. K. Sharma and J. Spitz, Thin Solid Films 66, L51 (1980). https://doi.org/10.1016/0040-6090(80)90398-3
  24. P. Scharnhorst, Surf. Sci. 15, 380 (1969). https://doi.org/10.1016/0039-6028(69)90130-7
  25. H. Caswell and Y. Budo, J. Appl. Phys. 35, 644 (1964). https://doi.org/10.1063/1.1713429
  26. L. Bachmann, D. L. Sawyer, and B. M. Siegel, J. Appl. Phys. 36, 304 (1966).
  27. N. L. Wu and J. Phillips, J. Appl. Phys. 59, 769 (1986). https://doi.org/10.1063/1.336597
  28. M. Eriksson, I. Olsson, R. Erlandsson, U. Helmers son, and L. G. Ekedahl, Thin Solid Films 342, 297 (1999). https://doi.org/10.1016/S0040-6090(98)01395-9
  29. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285, 1551 (1999). https://doi.org/10.1126/science.285.5433.1551
  30. C. Favazza, R. Kalyanaraman, and R. Sureshkumar, Nanotechnology 17, 4229 (2006). https://doi.org/10.1088/0957-4484/17/16/038
  31. L. Huang, S. J. Chey, and J. H. Weaver, Phys. Rev. Lett. 80, 4095 (1998). https://doi.org/10.1103/PhysRevLett.80.4095
  32. G. D. Waddill, I. M. Vitomirov, C. M. Aldao, and J. H. Weaver, Phys. Rev. Lett. 62, 1568 (1989). https://doi.org/10.1103/PhysRevLett.62.1568
  33. J. H. Weaver and G. D. Waddill, Science 251, 1444 (1991). https://doi.org/10.1126/science.251.5000.1444
  34. J. K. Koo, J. M. Kim, D. H. Ryu, B. J. Choi, D. W. Kim, D. H. Lee, U. I. Kim, S. Mitani, M. Kamiko, and J. G. Ha, J. Korean Vacuum Soc. 20, 7 (2011). https://doi.org/10.5757/JKVS.2011.20.1.007
  35. E. A. Colbourn, W. C. MacKrodt, and P. W. Tasker, J. Mater. Sci. 18, 1917 (1983). https://doi.org/10.1007/BF00554983
  36. L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, Surf. Sci. 411, 186 (1998). https://doi.org/10.1016/S0039-6028(98)00363-X