Abstract
In the determination of suitable frame sizes associated with dynamic framed slotted Aloha used in radio frequency identification tag identification processes, the widely imposed constraint $L=2^Q$ often yields inappropriate values deviating far from the optimal values, while a straightforward use of the estimated optimal frame sizes causes frequent restarts of read procedures, both resulting in long identification delays. Taking a trade-off, in this paper, we propose a new method for determining effective frame sizes where the effective frame size changes in a multiple of a predetermined step size, namely ${\Delta}$. Through computer simulations, we show that the proposed scheme works fairly well in terms of identification delay.