DOI QR코드

DOI QR Code

압력수준과 세립분함유량에 따른 모래의 압축특성

Influences of Confining Pressure and Fines Content on Compressibility Characteristics of Sand

  • Kim, Uk-Gie (Geotechnical Engineering Research Division, KITC) ;
  • Zhuang, Li (Dept. of Civil Engineering, Korea Univ.) ;
  • Kim, Ju-Hyun (railroad department, Dowha Engineering)
  • 투고 : 2012.07.10
  • 심사 : 2012.08.02
  • 발행 : 2012.09.28

초록

본 논문에서는 혼합토의 역학적 특성을 해명하기 위한 기초연구로 모래와 비소성 실트로 구성된 혼합토를 대상으로 모래가 골격구조의 주체를 이루는 범위 안에서 다양한 세립분함유율로 조성된 공시체를 제작하였다. 모래입자의 파쇄가 발생하는 고압영역의 등방압축실험을 수행하기 위하여 고압삼축시험기를 이용하여 혼합토의 압축특성 및 파쇄에 대한 영향을 조사했다. 시험 결과, 모래의 압축특성은 입자파쇄가 발생함에 따라 항복에 도달한 뒤에는 1개의 NCL에 수렴하는 경향을 나타낸다. 한편, 혼합토의 압축특성은 세립분함유율이 증가함에 따라 조립자가 세립분에 의해 둘러싸여 쿠션작용에 의해, 조립자가 파쇄를 일으키기 어려워지므로 압축곡선의 최대경사가 완만해지고 항복응력 또한 증가함을 알 수 있다.

In order to investigate mechanics of mixtures composed of sand and non-plastic silt, various specimens, with sand dominating the soil structure, and with varying fines content, fines content varying were produced. Isotropic consolidation tests were performed using high pressure triaxial test apparatus within high pressure levels where sand grain crushing happened. Experimental results showed that compressive curve of sand after yielding contracts to the NCL due to breakage of sand grains. Moreover, with the increase of fines content, coarse grains are surrounded by fines to form cushion effect, which made the breakage of coarse grains become difficult. Therefore, the maximum inclination of compressive curve became flatter and yield stress increased.

키워드

참고문헌

  1. Adachi, M., Yasuhara, K., and Shimabukuro, A. (2000), "Influences of Sample Preparation Method on the Behavior of Non-plastic Silts in Undrained Monotonic and Cyclic Triaxial Tests", Tsuchito- Kiso, Vol.48, No.11, pp.24-27.
  2. Ham, T. and Kim, U. (2008), "Influence of Water on Compression Characteristic for Decomposed Granite Soils", Journal of Korean Geotechnical Society(KGS), Vol.24, No.10, pp.1-9.
  3. Hardin, B. O. (1985), "Crushing of Soil Particles", Journal of Geotechnical Engineering, ASCE, Vol.111, No.10, pp.1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
  4. Hyodo, M., Kim, U., Nakata, Y., and Yoshimoto, N. (2010), "Effect of Fines on Undrained Shear Characteristics of Sand-Clay Mixtures", Journal of Japan Society of Civil Engineers(JSCE), Vol.66, No.1, pp.215-225.
  5. Japanese Geotechnical Society (1992), "Intermediate Soil, Sand or Clay", Geo-Tech Note 2, pp.1-6.
  6. Kenny, T. C. (1977), "Residual Strengths of Mineral Mixture", Proceedings of the 9th International Conference Soil Mechanics, Tokyo1, pp.155-160.
  7. Kim, J., Beak, W., Ishikura, R., and Matsuda, H. (2010), "Undrained Shear Strength Characteristics of Intermediate Soils and Their Application to Rapid Banking Embankment Method", Proceedings of the 9th National Symposium on Ground Improvement, The Society of Material Science, pp.299-304.
  8. Martins, F. B., Bressani, L. A., Coop, M. R., and Bica, A. V. D. (2001), "Some Aspects of the Compressibility Behaviour of a Clayey Sand", Canadian Geotechnical Journal, Vol.38, pp.1177-1186. https://doi.org/10.1139/t01-048
  9. Mitchell, J. K. (1977), "Fundamentals of Soil Behaviour", 2nd edn, John Wiley Interscience NewYork, pp.172-189.
  10. Naeini, S. A. and Baziar, M. H. (2004), "Effect of Fines Content on Steady-State Strength of Mixed and Layered Samples of a Sand", Soil dynamic sand earthquake engineering, Vol.24, pp.181-187. https://doi.org/10.1016/j.soildyn.2003.11.003
  11. Nakase, A. and Kamei, T. (1983), "Undrained Shear Strength Anisotropy of Normally Consolidated Cohesive Soils", Soils and Foundations, Vol.23, No.1, pp.91-101.
  12. Nakase, A. and Kamei, T. (1988), "Undrained Shear Strength of Remoulded Marine Clay", Soils and Foundations, Vol.28, No.1, pp.29-40. https://doi.org/10.3208/sandf1972.28.29
  13. Ni, Q., Tan, T. S., Dasari, G. R., and Hight, D. W. (2004), "Contribution of Fines to the Compressive Strength of Mixed Soils", Geotechnique, Vol.54, No.9, pp.561-569. https://doi.org/10.1680/geot.2004.54.9.561
  14. Nocilla, A., Coop, M. R., and Colleselli, F. (2006), "The Mechanics of an Italian silt: an example of 'transitional' behaviour", Geotechnique, Vol.56, No.4, pp.261-271. https://doi.org/10.1680/geot.2006.56.4.261
  15. Ochiai, H. and Ohmine, K. (1993), "Compression and Strength Properties of Sand-Clay Mixed Soils", Tsuchi-to-Kiso, Vol.41, No.7, pp.11-16.
  16. Tanaka, H., Tanaka, M., and Shiwakoti, D. R. (2001), "Characteristics of soils with low plasticity: Intermediate soil from Ishinomaki, Japan and lean clay from Drammen, Norway", Soils and Foundations, Vol.41, No.1, pp.83-96. https://doi.org/10.3208/sandf.41.83
  17. Thevanayagam, S., Shenthan, T., Mohan, S., and Liang, J. (2002), "Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silty", Journal of geotechnical and geoenvironmental engineering, Vol.128, No.10, pp.849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  18. Tsuchida, T. (1993), "Consolidation, Compression and Permeability Properties of Intermediate Soil and Mixture Soil", Tsuchi-to-Kiso, Vol.41, No.7, pp.5-10.
  19. Yamamuro, J. A. and Covert, K. M. (2001), "Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content" Journal of geotechncial and geoenvironmental engineering, ASCE, Vol.127, No.4, pp.314-324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314)