DOI QR코드

DOI QR Code

Synthesis and Structure of a 3-D Metal-Organic Framework, [Cd2(1,4-cyclohexanedicarboxylate)2·DMF], Comprising Unusual Two Different Ligand Conformations

  • Yoon, Min-Young (Center for Smart Supramolecules and Division of Advanced Materials and Science, Pohang University of Science and Technology) ;
  • Sun, Ho-Jung (Department of Material Science and Engineering, Kunsan National University) ;
  • Lee, Dong-Heon (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Park, Gyung-Se (Department of Chemistry, Kunsan National University)
  • Received : 2012.05.24
  • Accepted : 2012.06.11
  • Published : 2012.09.20

Abstract

Keywords

References

  1. Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Int. Ed. 2004, 43, 5033. https://doi.org/10.1002/anie.200460712
  2. Murray, L. J.; Dinc , M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. https://doi.org/10.1039/b802256a
  3. Han, S. S.; Mendoza-Corté, J. L.; Goddard, W. A., III. Chem. Soc. Rev. 2009, 38, 1460. https://doi.org/10.1039/b802430h
  4. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703. https://doi.org/10.1021/cr200217c
  5. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. https://doi.org/10.1021/cr2003272
  6. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 835.
  7. Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. 2004, 126, 32. https://doi.org/10.1021/ja038678c
  8. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477. https://doi.org/10.1039/b802426j
  9. Li, J. R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869. https://doi.org/10.1021/cr200190s
  10. Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606. https://doi.org/10.1126/science.1217544
  11. Seo, J.-S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. https://doi.org/10.1038/35010088
  12. Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524. https://doi.org/10.1021/ja901440g
  13. Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. https://doi.org/10.1039/b807083k
  14. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. https://doi.org/10.1039/b807080f
  15. Kim, K.; Banerjee, M.; Yoon, M.; Das, S. Top. Curr. Chem. 2010, 293, 115.
  16. Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196. https://doi.org/10.1021/cr2003147
  17. Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762. https://doi.org/10.1126/science.1075948
  18. Kepert, C. J. Chem. Commun. 2006, 695.
  19. Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. https://doi.org/10.1039/b804757j
  20. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330. https://doi.org/10.1039/b802352m
  21. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. https://doi.org/10.1021/cr200324t
  22. Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Chem. Rev. 2012, 112, 1126. https://doi.org/10.1021/cr200101d
  23. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. https://doi.org/10.1021/cr200256v
  24. Sadakiyo, M.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 9906. https://doi.org/10.1021/ja9040016
  25. Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8, 831. https://doi.org/10.1038/nmat2526
  26. Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705. https://doi.org/10.1038/nchem.402
  27. Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. H. J. Am. Chem. Soc. 2010, 132, 14055. https://doi.org/10.1021/ja107035w
  28. Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 2034. https://doi.org/10.1021/ja109810w
  29. Yoon, M.; Suh, K.; Kim, H.; Kim, Y.; Selvapalam, N.; Kim, K. Angew. Chem. Int. Ed. 2011, 50, 7870. https://doi.org/10.1002/anie.201101777
  30. Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa, S. Angew. Chem. Int. Ed. 2011, 50, 11706. https://doi.org/10.1002/anie.201102997
  31. Sahoo, S. C.; Kundu, T.; Banerjee, R. J. Am. Chem. Soc. 2011, 133, 17950. https://doi.org/10.1021/ja2078637
  32. Horike, S.; Umeyama, D.; Inukai, M.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2012, 134, 7612. https://doi.org/10.1021/ja301875x
  33. Rao, C. N.; Natarajan, R. S.; Vaidhyanathan, R. Angew. Chem. Int. Ed. 2004, 43, 1466. https://doi.org/10.1002/anie.200300588
  34. Miller, S. R.; Wright, P. A.; Serre, C.; Loiseau, T.; Marrot, J.; Ferey, G. Chem. Commun. 2005, 3850.
  35. Kim, H.; Park, G.; Kim, K. CrystEngComm 2008, 10, 954. https://doi.org/10.1039/b801536h
  36. Park, G.; Kim, H.; Lee, G. H.; Park, S.; Kim, K. Bull. Korean Chem. Soc. 2006, 27, 443. https://doi.org/10.5012/bkcs.2006.27.3.443
  37. Kim, H.; Sun, Y.; Kim, Y.; Kajiwara, T.; Yamashita, M.; Kim, K. CrystEngComm 2011, 13, 2197. https://doi.org/10.1039/c1ce05031a
  38. O'Keeffe, M.; Yaghi, O. M. Chem. Rev. 2012, 112, 675. https://doi.org/10.1021/cr200205j
  39. Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. https://doi.org/10.1039/b903811f
  40. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
  41. Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem. Int. Ed. 2004, 43, 1466. https://doi.org/10.1002/anie.200300588
  42. Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Int. Ed. 2004, 43, 5033. https://doi.org/10.1002/anie.200460712
  43. Horcajada, P.; Serre, C.; Vallet- Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 5974.
  44. Ockwig, N. W.; Delagado-Freidrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176. https://doi.org/10.1021/ar020022l
  45. Janiak, C. Dalton Trans. 2003, 2781.
  46. James, S. L. Chem. Soc. Rev. 2003, 32, 276. https://doi.org/10.1039/b200393g
  47. Kim, Y.; Jung, D.-Y. Chem. Commun. 2002, 908.
  48. Kurmoo, M.; Kumagai, H.; Hughes, S. M.; Kepert, C. Inorg. Chem. 2003, 42, 6709. https://doi.org/10.1021/ic034787g
  49. Bi, W.; Cao, R.; Sun, D.; Yuan, D.; Li, X.; Hong, M. Inorg. Chem. Commun. 2003, 6, 1426. https://doi.org/10.1016/j.inoche.2003.09.001
  50. Du, M.; Cai, H.; Zhao, X.-J. Inorg. Chim. Acta 2005, 358, 4034. https://doi.org/10.1016/j.ica.2005.07.006
  51. Zheng, Y.-Z.; Tong, M.-L.; Zhang, W.-X.; Chen, X.-M. Chem. Commun. 2006, 165.
  52. Thirumurugan, A.; Avinash, M. B.; Rao, C. N. R. Dalton Trans. 2006, 221.
  53. Kurmoo, M.; Kumagai, H.; Akita-Tanaka, M.; Inoue, K., Takagi, S. Inorg. Chem. 2006, 45, 1627. https://doi.org/10.1021/ic051633n
  54. Rao, K. P.; Thirumurugan, A.; Rao, C. N. R. Chem.-Eur. J. 2007, 13, 3193. https://doi.org/10.1002/chem.200600966
  55. Yang, J.; Li, G.-D.; Cao, J.-J.; Yue, Q.; Li, G.-H.; Chen, J.-S. Chem.-Eur. J. 2007, 13, 3248. https://doi.org/10.1002/chem.200600730
  56. Xu, H.; Li, Z. Micropor. Mesopor. Mat. 2008, 115, 522. https://doi.org/10.1016/j.micromeso.2008.02.029
  57. Zhang, R.-F.; Wang, Q.-F.; Yang, M.-Q.; Wang, Y.-R.; Ma, C.-L. Polyhedron 2008, 27, 3123. https://doi.org/10.1016/j.poly.2008.06.039
  58. Hernandez-Ahuactzi, I. F.; Cruz-Huerta, J.; Barba, V.; Hopfl, H.; Zamudio-Rivera, L. S.; Beltran, H. I. Eur. J. Inorg. Chem. 2008, 1200.
  59. Gurunatha, K. L.; Maji, T. K. Inorg. Chem. 2009, 48, 10886. https://doi.org/10.1021/ic901804a
  60. Lu, J.; Bi, W.-H.; Xiao, F.-X.; Batten, S. R.; Cao, R. Chem.-Asian J. 2008, 3, 542. https://doi.org/10.1002/asia.200700276
  61. Zheng, Y.-Z.; Xue, W.; Zhang, W.-X.; Tong, M.-L.; Chen, X.-M.; Grandjean, F.; Long, G. J.; Ng, S.-W.; Panissod, P.; Drillon, M. Inorg. Chem. 2009, 48, 2028. https://doi.org/10.1021/ic8019155
  62. Tian, G.; Zhu, F.; Su, B.-L.; Qiu, S. J. Mater. Sci. 2009, 44, 6576. https://doi.org/10.1007/s10853-009-3633-2
  63. Lu, J.; Bi, W.; Cao, R. CrystEngComm 2009, 11, 2248. https://doi.org/10.1039/b909821f
  64. Eliel, E. L.; Allinger, N. L.; Angyal S. J.; Morrison, G. A. Conformational Analysis; John Wiley: 1996.

Cited by

  1. -1,4-chdc Ions toward Macrocyclic Zinc(II) Complexes vol.36, pp.8, 2015, https://doi.org/10.1002/bkcs.10375
  2. Macrocyclic Zinc(II) Coordination Polymers Constructed from Aromatic and Cyclohexane Dicarboxylate Ligands vol.59, pp.4, 2015, https://doi.org/10.5012/jkcs.2015.59.4.336
  3. -benzimidazole]tricadmium(II) vol.71, pp.5, 2015, https://doi.org/10.1107/S2053229615005823
  4. Cadmium–1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2′-bipyridines: syntheses, crystal structures and photoluminescence studies vol.46, pp.37, 2017, https://doi.org/10.1039/C7DT02376F
  5. Counter Anion Directing Structure Control: An Anionic 3D Open Framework with a Diamond Network Structure Comprising of 1,4-Cyclohexanedicarboxylic Acid vol.35, pp.9, 2012, https://doi.org/10.5012/bkcs.2014.35.9.2847
  6. Synthesis, characterization, and crystal structure of macrocyclic nickel(II) complexes bearing a,e-cis-1,4-chdc and e,e-trans-1,4-chdc (chdc = cyclohexanedicarboxylate) ligands vol.634, pp.1, 2012, https://doi.org/10.1080/15421406.2016.1177908
  7. Transition Metal Coordination Polymers with Trans-1,4-Cyclohexanedicarboxylate: Acidity-Controlled Synthesis, Structures and Properties vol.13, pp.2, 2012, https://doi.org/10.3390/ma13020486