DOI QR코드

DOI QR Code

Investigation of the Hydrogen Storage Mechanism of Expanded Graphite by Measuring Electrical Resistance Changes

  • Im, Ji-Sun (Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong) ;
  • Jang, Seung-Soon (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2012.05.08
  • Accepted : 2012.06.25
  • Published : 2012.09.20

Abstract

The hydrogen storage mechanism of graphite was studied by measuring the electrical resistance change. Graphite was expanded and activated to allow for an easy hydrogen molecule approach and to enlarge the adsorption sites. A vanadium catalyst was simultaneously introduced on the graphite during the activation process. The hydrogen storage increased due to the effects of expansion, activation, and the catalyst. In addition, the electrical resistance of the prepared samples was measured during hydrogen molecule adsorption to investigate the hydrogen adsorption mechanism. It was found that the electrical resistance changed as a result of the easy hydrogen molecule approach, as well as of the adsorption process and the catalyst. It was also notable that the catalyst improved not only the hydrogen storage capacity but also the speed of hydrogen storage based on the response time. The hydrogen storage mechanism is suggested based on the effects of expansion, activation, and the catalyst.

Keywords

References

  1. Hardy, B.; Corgnale, C.; Chahine, R.; Richard, M. A.; Garrison, S.; Tamburello, D.; Cossement, D.; Anton, D. Int. J. Hydrogen Energ. 2012, 37, 5691. https://doi.org/10.1016/j.ijhydene.2011.12.125
  2. Chen, C. Y.; Chang, J. K.; Tsai, W. T. Int. J. Hydrogen Energ. 2012, 37, 3305. https://doi.org/10.1016/j.ijhydene.2011.11.084
  3. Yoo, H. M.; Lee, S. Y.; Kim, B. J.; Park, S. J. Carbon Lett. 2011, 12, 112. https://doi.org/10.5714/CL.2011.12.2.112
  4. Bai, B. C.; Kim, J. G.; Naik, M.; Im, J. S.; Lee, Y. S. Carbon Lett. 2011, 12, 171. https://doi.org/10.5714/CL.2011.12.3.171
  5. Yang, S. J.; Jung, H.; Kim, T.; Im, J. H.; Park, C. R. Int. J. Hydrogen Energ. 2012, 37, 5777. https://doi.org/10.1016/j.ijhydene.2011.12.163
  6. Sayed Ahmed, S. A.; Abo El-enin, R. M. M.; El-Nabarawy, Th. Carbon Lett. 2011, 12, 152. https://doi.org/10.5714/CL.2011.12.3.152
  7. Manocha, S.; Brahmbhatt, A. Carbon Lett. 2011, 12, 85. https://doi.org/10.5714/CL.2011.12.2.085
  8. Bai, B. C.; Kim, J. G.; Im, J. S.; Jung, S. C.; Lee, Y. S. Carbon Lett. 2011, 12, 236. https://doi.org/10.5714/CL.2011.12.4.236
  9. Jimenez, V.; Ramirez-Lucas, A.; Sanchez, P.; Valverde, J. L.; Romero, A. Int. J. Hydrogen Energ. 2012, 37, 4144. https://doi.org/10.1016/j.ijhydene.2011.11.106
  10. Singh, P.; Kulkarni, M. V.; Gokhale, S. P.; Chikkali, S. H.; Kulkarni, C. V. Appl. Surf. Sci. 2012, 258, 3405. https://doi.org/10.1016/j.apsusc.2011.11.075
  11. Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. https://doi.org/10.1021/ja01539a017
  12. Wakeland, S.; Martinez, R.; Grey, J. K.; Luhrs, C. C. Carbon 2010, 48, 3463. https://doi.org/10.1016/j.carbon.2010.05.043
  13. Ruth, U. P.; Francisco, C. M.; David, F. J.; Carlos, M. C. Micropor. Mesopor Mat. 2006, 92, 64. https://doi.org/10.1016/j.micromeso.2006.01.002
  14. Gorka, J.; Zawislak, A.; Choma, J.; Jaroniec, M. Appl. Surf. Sci. 2010, 256, 5187. https://doi.org/10.1016/j.apsusc.2009.12.092
  15. Castro, M. M.; Manuel, M. E.; Miguel, M. S.; Francisco, R. R. Carbon 2010, 48, 636. https://doi.org/10.1016/j.carbon.2009.10.005
  16. Im, J. S.; Park, S. J.; Kim, T. J.; Kim, Y. H.; Lee, Y. S. J. Colloid Interf. Sci. 2008, 318, 42. https://doi.org/10.1016/j.jcis.2007.10.024
  17. Armandi, M.; Bonelli, B.; Geobaldo, F.; Garrone, E. Micropor. Mesopor Mat. 2010, 132, 414. https://doi.org/10.1016/j.micromeso.2010.03.021
  18. Im, J. S.; Kwon, O.; Kim, Y. H.; Park, S. J.; Lee, Y. S. Micropor. Mesopor Mat. 2008, 115, 514. https://doi.org/10.1016/j.micromeso.2008.02.027
  19. Im, J. S.; Park, S. J.; Lee, Y. S. Mater. Res. Bull. 2009, 44, 1871. https://doi.org/10.1016/j.materresbull.2009.05.010
  20. Im, J. S.; Kang, S. C.; Bai, B. C.; Suh, J. K.; Lee, Y. S. Int. J. Hydrogen Energ. 2011, 36, 1560. https://doi.org/10.1016/j.ijhydene.2010.10.024
  21. Kim, B. J.; Lee, Y. S.; Park, S. J. Int. J. Hydrogen Energ. 2008, 33, 2254. https://doi.org/10.1016/j.ijhydene.2008.02.019
  22. Kim, B. J.; Park, S. J. Int. J. Hydrogen Energ. 2011, 36, 648. https://doi.org/10.1016/j.ijhydene.2010.09.097
  23. Kuchta, B.; Firlej, L.; Roszak, S.; Pfeifer, P. Adsorption 2010, 16, 413. https://doi.org/10.1007/s10450-010-9235-0
  24. Zubkov, V. V.; Samsonov, V. M.; Grinev, I. V. J. Surf. Invest. 2012, 6, 49. https://doi.org/10.1134/S102745101201020X
  25. Fomkin, A. A.; Sinitsyn, V. A. Russ. Chem. Bull. 2009, 58, 706. https://doi.org/10.1007/s11172-009-0081-8
  26. Pocsik, I.; Hundhausen, M.; Koos, M.; Ley, L. J. Non-Cryst. Solids 1998, 227-230, 1083. https://doi.org/10.1016/S0022-3093(98)00349-4
  27. Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
  28. Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095. https://doi.org/10.1103/PhysRevB.61.14095
  29. Lee, H.; Kim, I. Y.; Han, S. S.; Bae, B. S.; Choi, M. K.; Yang, I. S. J. Appl. Phys. 2001, 90, 813. https://doi.org/10.1063/1.1378337
  30. Gupta, V.; Nakajima, T.; Ohzawa, Y.; Zemva, B. J. Fluorine Chem. 2003, 120, 143. https://doi.org/10.1016/S0022-1139(02)00323-8
  31. Gupta, V.; Nakajima, T.; Zemva, B. J. Fluorine Chem. 2001, 110, 145. https://doi.org/10.1016/S0022-1139(01)00422-5
  32. Lueking, A.; Yang, R. T. J. Catal. 2002, 206, 165. https://doi.org/10.1006/jcat.2001.3472
  33. Chen, C. H.; Huang, C. C. Micropor. Mesopor Mat. 2008, 109, 549. https://doi.org/10.1016/j.micromeso.2007.06.003
  34. Lueking, A. D.; Yang, R. T. Appl. Catal. 2004, A 265, 259.
  35. Im, J. S.; Park, S. J.; Lee, Y. S. Int. J. Hydrogen Energ. 2009, 34, 1423. https://doi.org/10.1016/j.ijhydene.2008.11.054
  36. Li, W.; Hoa, N. D.; Kim, D. Sens. Actuator B-Chem. 2010, 149, 184. https://doi.org/10.1016/j.snb.2010.06.002
  37. Im, J. S.; Kang, S. C.; Bai, B. C.; Bae, T. S.; In, S. J.; Jeong, E.; Lee, Y. S. Carbon 2011, 49, 2235. https://doi.org/10.1016/j.carbon.2011.01.054
  38. Im, J. S.; Kang, S. C.; Lee, S. H.; Lee, Y. S. Carbon 2010, 48, 2573. https://doi.org/10.1016/j.carbon.2010.03.045

Cited by

  1. Performance of new crystal cathode pressure gauges for long-pulse operation in the Wendelstein 7-X stellarator vol.90, pp.12, 2019, https://doi.org/10.1063/1.5121203
  2. In Situ Transformed Solid Electrolyte Interphase by Implanting a 4-Vinylbenzoic Acid Nanolayer on the Natural Graphite Surface vol.12, pp.29, 2020, https://doi.org/10.1021/acsami.0c08147
  3. High hydrogen uptake by a metal-graphene-microporous carbon network vol.271, pp.None, 2012, https://doi.org/10.1016/j.mseb.2021.115275