DOI QR코드

DOI QR Code

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach

  • Wang, Yuliang (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Zhang, Jinchun (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Jiang, Yanlan (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Wang, Kun (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Zhou, Mingyu (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Liang, Xiaorui (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
  • Received : 2012.03.26
  • Accepted : 2012.05.24
  • Published : 2012.09.20

Abstract

Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.

Keywords

References

  1. Bodo, E.; Gianturco, F. A.; Martinazzo, R. Phys. Rep. 2003, 384, 85. https://doi.org/10.1016/S0370-1573(03)00243-6
  2. Lepp, S.; Shull, J. M. Astrophys. J. 1984, 280, 465. https://doi.org/10.1086/162013
  3. Clarke, N. J.; Sironi, M.; Raimondi, M.; Kumar, S.; Gianturco, F. A.; Buonomo, E.; Cooper, D. L. Chem. Phys. 1998, 233, 9. https://doi.org/10.1016/S0301-0104(98)00131-1
  4. Lee, H. S.; Lee, Y. S.; Jeung, G. H. J. Phys. Chem. A 1999, 103, 11080. https://doi.org/10.1021/jp9921295
  5. Dunne, L. J.; Murrell, J. N.; Jemmer, P. Chem. Phys. Lett. 2001, 336, 1. https://doi.org/10.1016/S0009-2614(01)00102-6
  6. Kim, K. H.; Lee, Y. S.; Ishida, T.; Jeung, G. J. Chem. Phys. 2003, 119, 4689. https://doi.org/10.1063/1.1596391
  7. Prudente, F. V.; Marques, J. M. C.; Maniero, A. M. Chem. Phys. Lett. 2009, 474, 18. https://doi.org/10.1016/j.cplett.2009.04.016
  8. Wernli, M.; Caruso, D.; Bodo, E.; Gianturco, F. A. J. Phys. Chem. A 2009, 113, 1121. https://doi.org/10.1021/jp809163g
  9. Martinazzo, R.; Bodo, E.; Gianturco, F. A.; Raimondi, M. Chem. Phys. 2003, 287, 335. https://doi.org/10.1016/S0301-0104(02)01021-2
  10. Martinazzo, R.; Tantardini, G. F.; Bodo, E.; Gianturco, F. A. J. Chem. Phys. 2003, 119, 11241. https://doi.org/10.1063/1.1621852
  11. Hsiao, M. K.; Lin, K. C.; Hung, Y. M. J. Chem. Phys. 2011, 134, 034119. https://doi.org/10.1063/1.3519801
  12. Bovino, S.; Wernli, M.; Gianturco, F. A. Astrophys. J. 2009, 699, 383. https://doi.org/10.1088/0004-637X/699/1/383
  13. Bodo, E.; Gianturco, F. A.; Martinazzo, R. J. Phys. Chem. A 2001, 105, 10986. https://doi.org/10.1021/jp0123435
  14. Padmanaban, R.; Mahapatra, S. J. Chem. Phys. 2002, 117, 6469. https://doi.org/10.1063/1.1504702
  15. Padmanaban, R.; Mahapatra, S. J. Chem. Phys. 2004, 121, 7681. https://doi.org/10.1063/1.1794655
  16. Padmanaban, R.; Mahapatra, S. J. Phys. Chem. A 2006, 110, 6039. https://doi.org/10.1021/jp057280v
  17. Bodo, E.; Gianturco, F. A.; Martinazzo, R. J. Phys. Chem. A 2001, 105, 10994. https://doi.org/10.1021/jp012344x
  18. Bulut, N.; Castillo, J. F.; Aoiz, F. J.; Banares, L. Phys. Chem. Chem. Phys. 2008, 10, 821. https://doi.org/10.1039/b712625e
  19. Bulut, N.; Castillo, J. F.; Banares, L.; Aoiz, F. J. J. Phys. Chem. A 2009, 113, 14657 https://doi.org/10.1021/jp904429e
  20. Aslan, E.; Bulut, N.; Castillo, J. F.; Bañares, L.; Roncero, O.; Aoiz, F. J. J. Phys. Chem. A 2012, 116, 132. https://doi.org/10.1021/jp210254t
  21. Bodo, E.; Gianturco, F. A.; Martinazzo, R.; Forni, A.; Famulari, A.; Raimondi, M. J. Phys. Chem. A 2000, 104, 11972. https://doi.org/10.1021/jp0022510
  22. Bodo, E.; Gianturco, F. A.; Martinazzo, R.; Raimondi, M. Chem. Phys. 2001, 271, 309. https://doi.org/10.1016/S0301-0104(01)00424-4
  23. Pino, I.; Martinazzo, R.; Tantardini, G. F. Phys. Chem. Chem. Phys. 2008, 10, 5545. https://doi.org/10.1039/b805750h
  24. Bovino, S.; Steocklin, T.; Gianturco, A. Astrophys. J. 2010, 708, 1560. https://doi.org/10.1088/0004-637X/708/2/1560
  25. Roy, T.; Rao, T. R.; Mahapatra, S. Chem. Phys. Lett. 2011, 501, 252. https://doi.org/10.1016/j.cplett.2010.11.075
  26. Gogtas, F. J. Chem. Phys. 2005, 123, 244301. https://doi.org/10.1063/1.2145927
  27. Wagner, A. F.; Wahl, A. C.; Karo, A. M.; Krejci, R. J. Chem. Phys. 1978, 69, 3756. https://doi.org/10.1063/1.437040
  28. Defazio, P.; Petrongolo, C.; Gamallo, P.; Gonzalez, M. J. Chem. Phys. 2005, 122, 214303. https://doi.org/10.1063/1.1914765
  29. Murrel, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas, A. J. C. Molecular Potential Energy Functions; Wiley: Chichester, 1984.
  30. Shafer-Ray, N. E.; Orr-Ewing, A. J.; Zare, R. N. J. Phys. Chem. 1995, 99, 7591. https://doi.org/10.1021/j100019a045
  31. Orr-Ewing, A. J.; Zare, R. N. Annu. Rev. Phys. Chem. 1994, 45, 315. https://doi.org/10.1146/annurev.pc.45.100194.001531
  32. Aoiz, F. J.; Brouard, M.; Enriquez, P. A. J. Chem. Phys. 1996, 105, 4964. https://doi.org/10.1063/1.472346
  33. Kandel, S. A.; Alexander, A. J.; Kim, Z. H.; Zare, R. N.; Aoiz, F. J.; Bañares, L.; Castillo, J. F.; Sáez Rábanos, V. J. Chem. Phys. 2000, 112, 670. https://doi.org/10.1063/1.480602
  34. Chen, M. D.; Han, K. L.; Lou, N. Q. J. Chem. Phys. 2003, 118, 4463. https://doi.org/10.1063/1.1545112
  35. Wang, M. L.; Han, K. L.; He, G. Z. J. Chem. Phys. 1998, 109, 5446. https://doi.org/10.1063/1.476522
  36. Chen, M. D.; Han, K. L.; Lou, N. Q. Chem. Phys. Lett. 2002, 357, 483. https://doi.org/10.1016/S0009-2614(02)00585-7

Cited by

  1. + Li Reaction vol.119, pp.33, 2015, https://doi.org/10.1021/acs.jpca.5b05178
  2. Reaction vol.121, pp.8, 2017, https://doi.org/10.1021/acs.jpca.6b10094
  3. Quasi-classical trajectory study of H+LiH (v = 0, 1, 2, j = 0) vol.28, pp.8, 2012, https://doi.org/10.1088/1674-1056/28/8/083402
  4. Non-adiabatic dynamics studies of the H(2S) + LiH(X1Σ+) reaction by time-dependent wave packet method vol.22, pp.31, 2012, https://doi.org/10.1039/d0cp01803a