DOI QR코드

DOI QR Code

Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation

  • Chang, Ki-Hwan (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.) ;
  • Kim, Min-Soo (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.) ;
  • Hong, Gwang-Won (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.) ;
  • Seo, Mi-Sun (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.) ;
  • Shin, Yong-Nam (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.) ;
  • Kim, Se-Ho (Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp.)
  • Received : 2012.07.25
  • Accepted : 2012.08.14
  • Published : 2012.08.30

Abstract

It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the affinity of ER414. We obtained a 3D model of ER414 to identify the amino acids in the CDRs that needed to be mutated. Clones were selected from the phage library with randomized amino acids in the CDRs and substitution of amino acids in the HCDR3 and LCDR1 of ER414 led to improved affinity. A clone, H3-14, with a ~20-fold increased affinity, was selected from the HCDR3 randomized library. Then three clones, ER2, ER78 and ER79, were selected from the LCDR1 randomized library based on the H3-14 but did not show further increased affinities compared to that of H3-14. Of the three, ER2 was chosen for further characterization due to its better expression than others. We successfully performed affinity maturation of ER414 and obtained antibodies with a similar affinity as cetuximab. And antibody from an affinity maturation inhibits the EGF-mediated tyrosine phosphorylation of EGFR in a manner similar to cetuximab.

Keywords

References

  1. Carpenter, G. 1987. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem. 56:881-914. https://doi.org/10.1146/annurev.bi.56.070187.004313
  2. Yarden, Y., and M. X. Sliwkowski. 2001. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2: 127-137. https://doi.org/10.1038/35052073
  3. Laskin, J. J., and A. B. Sandler. 2004. Epidermal growth factor receptor: a promising target in solid tumours. CancerTreat. Rev. 30: 1-17.
  4. Herbst, R. S., and D. M. Shin. 2002. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94: 1593-1611. https://doi.org/10.1002/cncr.10372
  5. Capdevila, J., E. Elez, T. Macarulla, F. J. Ramos, M. Ruiz-Echarri, and J. Tabernero. 2009. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat. Rev. 35: 354-363. https://doi.org/10.1016/j.ctrv.2009.02.001
  6. Brabender, J., K. D. Danenberg, R. Metzger, P. M. Schneider, J. Park, D. Salonga, A. H. Hölscher, and P. V. Danenberg. 2001. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin. Cancer Res. 7: 1850-1855.
  7. Baselga, J. 2002. Targeting the epidermal growth factor receptor with tyrosine kinase inhibitors: small molecules, big hopes. J. Clin. Oncol. 20: 2217-2219. https://doi.org/10.1200/JCO.2002.20.9.2217
  8. Thomas, S. M., and J. R. Grandis. 2004. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev. 30: 255-268. https://doi.org/10.1016/j.ctrv.2003.10.003
  9. Herbst, R. S. 2004. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 59(2 Suppl):21-26. https://doi.org/10.1016/j.ijrobp.2003.10.027
  10. Chang, K. H., M. S. Kim, G. W. Hong, Y. N. Shin, and S. H. Kim. 2012. Conversion of a murine monoclonal antibody A13 targeting epidermal growth factor receptor to a human monoclonal antibody by guided selection. Exp. Mol. Med.44: 52-59. https://doi.org/10.3858/emm.2012.44.1.005
  11. Kim, S. H., and S. Y. Park. 2002. Selection and characterization of human antibodies against hepatitis B virus surface antigen (HBsAg) by phage-display. Hybrid. Hybridomics. 21:385-392. https://doi.org/10.1089/153685902761022742
  12. Kim, S. H., J. H. Chun, and S. Y. Park. 2001. Characterization of monoclonal antibodies against carcinoembryonic antigen (CEA) and expression in E. coli. Hybridoma. 20: 265-272. https://doi.org/10.1089/027245701753179857
  13. Kim, S. H., S. H. Song, Y. J. Kim, and S. Y. Park. 2001. Expression and characterization of a recombinant Fab fragment derived from an anti-human alpha-fetoprotein monoclonal antibody. Mol. Cells. 11: 158-163.
  14. Shin, Y. W., K. H. Ryoo, K. W. Hong, K. H. Chang, J. S. Choi, M. So, P. K. Kim, J. Y. Park, K. T. Bong, and S. H. Kim. 2007. Human monoclonal antibody against Hepatitis B virus surface antigen (HBsAg). Antiviral Res. 75: 113-120. https://doi.org/10.1016/j.antiviral.2007.01.005
  15. Urlaub, G., P. J. Mitchell, E. Kas, L. A. Chasin, V. L. Funanage, T. T. Myoda, and J. Hamlin. 1986. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions. Somat. Cell Mol. Genet. 12: 555-566. https://doi.org/10.1007/BF01671941
  16. Hong, K. W., C. G. Kim, S. H. Lee, K. H. Chang, Y. W. Shin, K. H. Ryoo, S. H. Kim, and Y. S. Kim. 2010. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab. J. Biotechnol. 145: 84-91. https://doi.org/10.1016/j.jbiotec.2009.09.023
  17. Yakes, F. M., W. Chinratanalab, C. A. Ritter, W. King, S. Seelig, and C. L. Arteaga. 2002. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody- mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62: 4132-4141.
  18. Kim, Y. S., R. Bhandari, J. R. Cochran, J. Kuriyan, and K. D. Wittrup. 2006. Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast. Proteins. 62: 1026-1035.
  19. Kim, M. S., S. H. Lee, M. Y. Song, T. H. Yoo, B. K. Lee, and Y. S. Kim. 2007. Comparative analyses of complex formation and binding sites between human tumor necrosis factor- alpha and its three antagonists elucidate their different neutralizing mechanisms. J. Mol. Biol. 374: 1374-1388. https://doi.org/10.1016/j.jmb.2007.10.034
  20. Song, M. Y., S. K. Park, C. S. Kim, T. H. Yoo, B. Kim, M. S. Kim, Y. S. Kim, W. J. Kwag, B. K. Lee, and K. Baek. 2008. Characterization of a novel anti-human TNF-alpha murine monoclonal antibody with high binding affinity and neutralizing activity. Exp. Mol. Med. 40: 35-42. https://doi.org/10.3858/emm.2008.40.1.35
  21. Cochran, J. R., Y. S. Kim, M. J. Olsen, R. Bhandari, and K. D. Wittrup. 2004. Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods. 287: 147-158. https://doi.org/10.1016/j.jim.2004.01.024
  22. Burgess, A. W. 2008. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors. 26: 263-274. https://doi.org/10.1080/08977190802312844
  23. Chothia, C., and A. M. Lesk. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol.196: 901-917. https://doi.org/10.1016/0022-2836(87)90412-8
  24. Li, S., K. R. Schmitz, P. D. Jeffrey, J. J. Wiltzius, P. Kussie, and K. M. Ferguson. 2005. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. CancerCell. 7: 301-311.
  25. Adams, G. P., R. Schier, A. M. McCall, H. H. Simmons, E. M. Horak, R. K. Alpaugh, J. D. Marks, and L. M. Weiner. 2001. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61:4750-4755.
  26. Rudnick, S. I., J. Lou, C. C. Shaller, Y. Tang, A. J. Klein-Szanto, L. M. Weiner, J. D. Marks, and G. P. Adams. 2011. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 71: 2250-2259. https://doi.org/10.1158/0008-5472.CAN-10-2277
  27. Kamat, V., J. M. Donaldson, C. Kari, M. R. Quadros, P. I. Lelkes, I. Chaiken, S. Cocklin, J. C. Williams, E. Papazoglou, and U. Rodeck. 2008. Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol. Ther. 7: 726-733. https://doi.org/10.4161/cbt.7.5.6097
  28. Schmiedel, J., A. Blaukat, S. Li, T. Knöchel, and K. M. Ferguson. 2008. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell. 13: 365-373. https://doi.org/10.1016/j.ccr.2008.02.019
  29. Li, S., P. Kussie, and K. M. Ferguson. 2008. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Structure 16: 216-227. https://doi.org/10.1016/j.str.2007.11.009

Cited by

  1. Isolation and Characterisation of a Recombinant Antibody Fragment That Binds NCAM1-Expressing Intervertebral Disc Cells vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0083678
  2. GC1118, an Anti-EGFR Antibody with a Distinct Binding Epitope and Superior Inhibitory Activity against High-Affinity EGFR Ligands vol.15, pp.2, 2016, https://doi.org/10.1158/1535-7163.mct-15-0679
  3. Epidermal growth factor receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies vol.44, pp.6, 2012, https://doi.org/10.1002/cbin.11340