DOI QR코드

DOI QR Code

Antioxidative Effect of Extracts from Different Parts of Juncus effusus L.

골풀 부위별 추출물의 항산화 효과

  • Choi, Chang-Hwan (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Won, Doo-Hyun (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Hwang, Jun-Pil (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology)
  • 최창환 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 원두현 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 황준필 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소)
  • Received : 2012.04.16
  • Accepted : 2012.09.22
  • Published : 2012.09.30

Abstract

In this study, the antioxidative effects of extracts from different parts of Juncus effusus L. were investigated. The three parts (above-ground part, below-ground part, medulla part) were selected. 50 % ethanol extract, ethyl acetate and aglycone fractions of J. effusus L. were used in experiments. The highest DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activities ($FSC_{50}$) was shown by medulla part (42.9 ${\mu}g/mL$) in 50 % ethanol extracts, below-ground part (12.1 ${\mu}g/mL$) in ethyl acetate fractions, and below-ground part (12.1 ${\mu}g/mL$) in aglycone fractions. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system using the luminol-dependent chemiluminescence assay showed the most prominent effect of medulla part (0.29 ${\mu}g/mL$) in 50 % ethanol extracts, below-ground part (0.25 ${\mu}g/mL$) in ethyl acetate fractions, and medulla part (0.20 ${\mu}g/mL$) in aglycone fractions. The cellular protective effects of extract/fractions of J. effusus L. on the rose-bengal sensitized photohemolysis of human erythrocytes were increased in a concentration dependent manner (0.5 ~ 10 ${\mu}g/mL$). Especially, aglycone fraction of medulla part at a concentration of 10 ${\mu}g/mL$ showed the most prominent protective effect among all extracts (${\tau}_{50}$, 321.0 min). These results indicate that extracts from below-ground part and medulla part of J. effusus L. extracts can be used as an natural antioxidant. Particularly, J. effusus L. can protect suggesting a high ${\tau}_{50}$ skin where many $^1O_2$ was generated by sunlight exposure.

이번 연구에서 우리는 골풀의 부위별 추출물의 항산화 활성을 측정하였다. 골풀의 부위는 상층부와 하층부, 고갱이 부위로 결정하였다. 실험은 골풀 50 % 에탄올 추출물, 에틸아세테이트(ethyl acetate) 분획, 아글리콘(aglycone) 분획 세 가지로 진행하였다. 항산화 활성 중 라디칼인 DPPH (1,1-diphenyl-2-picrylhydrazyl) 소거활성($FSC_{50}$)을 살펴본 결과 50 % 에탄올 추출물의 경우 고갱이 부위(42.9 ${\mu}g/mL$)가, 에틸아세테이트 분획은 지하 부위(12.1 ${\mu}g/mL$), 아글리콘 분획은 지하 부위(12.1 ${\mu}g/mL$)가 가장 높은 라디칼 소거능을 나타내었다. Luminol 발광법을 이용한 $Fe^{3+}$-EDTA/$H_2O_2$ 계에서 생성된 활성산소종에 대한 소거활성(총 항산화능, $OSC_{50}$)을 살펴본 결과, 50 % 에탄올 추출물은 고갱이 부위(0.29 ${\mu}g/mL$), 에틸아세테이트 분획은 지하 부위(0.25 ${\mu}g/mL$), 아글리콘 분획은 고갱이 부위(0.20 ${\mu}g/mL$)가 가장 높은 총 항산화능을 나타내었다. Rose-bengal로 증감된 $^1O_2$에 의한 적혈구 파괴에 대한 세포보호 효과는 10 ${\mu}g/mL$ 농도에서 고갱이 부위의 아글리콘 분획이 ${\tau}_{50}$ 321.0 min으로 가장 높은 세포 보호 활성을 나타내었다. 이와 같은 항산화 효과로 볼 때 골풀의 지하 부분과 고갱이 부위의 추출물은 천연 항산화제로서 여러 산업 분야에 응용 가능할 것이라 생각된다. 특히 높은 ${\tau}_{50}$ 값을 갖는 것으로 보아, 태양광 노출에 의해서 $^1O_2$이 많이 생성되는 부위인 피부를 효과적으로 보호해줄 수 있을 것으로 생각되어진다.

Keywords

References

  1. A. Klaus and H. Heribert, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373 (2004). https://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. D. J. Kang, S. H. Song, and C. B. Kang, et. al., Production of reactive oxygen species and nitric oxide by anticancer agents in rat polymorphonuclear leukocytes, J. Vet. Clin., 26(1), 8 (2009).
  3. T. Florence, G. F. Beatriz, and K. Lester, Reactive oxygen species in pulmonary inflammation by ambient particulates, Free Radic. Biol. Med., 35(4), 327 (2003). https://doi.org/10.1016/S0891-5849(03)00280-6
  4. H. J. Jee, H. J. Kim, A. J. Kim, Y. S. Bae, S. S. Bae, and J. Yun, UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS, Biochem. Biophys. Res. Commun., 383, 358 (2009). https://doi.org/10.1016/j.bbrc.2009.04.017
  5. J. H. Michael and E. D. Frederick, An epigenetic perspective on the free radical theory of development, Free Radic. Biol. Med., 43, 1023 (2007). https://doi.org/10.1016/j.freeradbiomed.2007.06.027
  6. L. C. Magdalena and Y. A. Tak, Reactive oxygen species, cellular redox systems, and apoptosis, Free Radic. Biol. Med., 48, 749 (2010). https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  7. H. Masaki, Role of antioxidants in the skin : Antiaging effects, J. Dermatol. Sci., 58, 85 (2010). https://doi.org/10.1016/j.jdermsci.2010.03.003
  8. R. R. Ruben, L. C. Lizbeth, and E. C. Mariano, et. al., Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kB activation and cell proliferation in human breast cancer MCF-7 cells, Mutat. Res., 674, 109 (2009). https://doi.org/10.1016/j.mrgentox.2008.09.021
  9. T. F. Slater, Free radical mechanisms in tissue injury, Biochem. J., 222, 1 (1984). https://doi.org/10.1042/bj2220001
  10. S. Y. Kim, D. H. Won, M. S. Lim, and S. N. Park, Cellular protective effect and component analysis of Euphorbia humifusa extracts, Kor. J. Pharmacogn., 41(4), 264 (2010).
  11. S. I. Kim, Y. J. Ahn, E. H. Kim, and S. N. Park, Antibacterial and antioxidative activities of Quercus acutissima Carruth leaf extracts and isolation of active ingredients, J. Soc. Cosmet. Scientists Korea, 35(2), 159 (2009).
  12. H. J. Lee, G. N. Lim, and S. N. Park, et. al., Antibacterial and antioxidative activity of Lespedeza cuneata G. don extracts, Korean J. Microbiol. Biotechnol., 39(1), 63 (2011).
  13. R. Kohen, Skin antioxidants: their role in aging and in oxidative stress - New approaches for their evaluation, Biomed. & Pharmacother., 53, 181 (1999). https://doi.org/10.1016/S0753-3322(99)80087-0
  14. S. Valentina, M. Soren, and J. Marina, et. al., Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms, Mech. Ageing Dev., 131, 48 (2010). https://doi.org/10.1016/j.mad.2009.11.005
  15. C. J. Kim, I. J. Ryoo, D. J. Park, H. S. Lee, Y. H. Kim, and I. D. Yoo, Screening of Biologically Active Compounds from various weeds, Agric. Chem. Biotechnol., 39, 5, (1996).

Cited by

  1. Synthesis and Antioxidative Activities of N,N'-Diferuloyl-putrescine (DFP) and Its Derivatives vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1093
  2. Antimicrobial Activity of Niaouli (Melaleuca quinquenervia) Leaf Extracts against Skin Flora vol.40, pp.3, 2014, https://doi.org/10.15230/SCSK.2014.40.3.313
  3. Antioxidative Effect and Tyrosinase Inhibitory Activity of Lindera obtusiloba Blume Extracts vol.38, pp.4, 2012, https://doi.org/10.15230/SCSK.2012.38.4.297