Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator

선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석

  • Koo, Ki-Lae (Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Yang, Oh-Nam (Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Lim, Cheong-Hwan (Department of Radiological Science, Hanseo University) ;
  • Choi, Won-Sik (Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Shin, Seong-Soo (Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Ahn, Woo-Sang (Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine)
  • 구기래 (울산의대 강릉아산병원 방사선종양학과) ;
  • 양오남 (울산의대 강릉아산병원 방사선종양학과) ;
  • 임청환 (한서대학교 방사선학과) ;
  • 최원식 (울산의대 강릉아산병원 방사선종양학과) ;
  • 신성수 (울산의대 강릉아산병원 방사선종양학과) ;
  • 안우상 (울산의대 강릉아산병원 방사선종양학과)
  • Received : 2012.07.27
  • Accepted : 2012.09.17
  • Published : 2012.09.28

Abstract

Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

선형가속기를 기반으로 하는 세기조절방사선치료와 정위적방사선수술에서는 치료계획시스템의 소조사면에 대한 신뢰할만한 선량분포를 계산하기 위해서는 우선적으로 소조사면의 정확한 빔 자료 측정이 선행되어야 한다. 특히 소조사면의 빔 자료 측정에서 조사면 가장자리에서의 급격한 선량 변화, 측면 전자비평형, 그리고 검출기의 체적 영향으로 인한 적절한 검출기 선택이 중요하다. 따라서 본 연구에서는 선형가속기의 소조사면에 대한 빔 자료 측정에 있어서 검출기의 선량 특성을 알아보고자 하였다. 검출기는 0.01 cc 부피와 0.13 cc 부피의 이온전리함과 정위적다이오드를 사용하였으며, 빔 자료는 광자선(6 MV와 15 MV)에 대하여 조사면 크기를 $2{\times}2cm^2$에서 $5{\times}5cm^2$까지 변화시켜 각 검출기를 이용하여 깊이선량백분율, 선량출력계수, 그리고 빔측면도를 측정하였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 $PDD_{20}/PDD_{10}$$2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 각각 1.02%와 0.12% 차이를 보였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기를 이용하여 얻어진 $PDD_{20}/PDD_{10}$의 차이가 6 MV와 15 MV에서 각각 평균 1.15%와 0.71% 이였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 선량출력계수 측정 결과, $2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 0.5%와 1.5%이내에서 일치하였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기의 차이가 0.5% 이내이였다. 3개의 깊이에서 측정된 빔측면도의 반음영은 정위적다이오드 검출기의 경우 6 MV와 15 MV에서 각각 평균 2.7 mm와 3.5 mm, CC01 이온전리함의 경우 각각 평균 3.4 mm와 4.3 mm, CC13 이온전리함의 경우 각각 평균 5.2 mm와 6.1 mm이였다. 이를 통해 깊이선량백분율과 선량출력계수 측정 시 $2{\times}2cm^2$ 조사면에서는 CC01 이온전리함과 정위적다이오드 검출기를 $3{\times}3cm^2$에서 $5{\times}5cm^2$ 조사면에서는 각 검출기의 사용이 가능할 것으로 판단된다. 또한 소조사면에 대한 정확한 빔측면도의 반음영을 측정하기 위해서는 유효체적이 작은 CC01 이온전리함과 정위적다이오드 검출기 사용하는 것이 타당하겠다.

Keywords

References

  1. Khan Fm: The Physics of Radiation Therapy, 4nd ed., Williams & Wilkins, Baltimore, 430, 2010
  2. Chus DT, Sham JS, Hung KN, Kwong DL, Kwong PW, and Leung LH: Stereotactic Radiosurgery as a Salvage Treatment for Locally Persistent and Recurrent Nasopharyngeal Carcinoma, Journal of the Sciences and Specialties of the Head and Neck, 21(7), 620-626, 1999 https://doi.org/10.1002/(SICI)1097-0347(199910)21:7<620::AID-HED6>3.0.CO;2-Q
  3. Verhey LJ: Comparison of Three-Dimensional Conformal Radiation Therapy and Intensity- Modulated Radiation Therapy Systems, Seminars in Radiation Oncology, 9(1), 78-98, 1999
  4. Benedict SH, Cardinale RM, Wu Q, Zwicker RD, Broaddus WC, and Mohan R: Intensity-Modulated Stereotactic Radiosurgery using Dynamic Micro- Multileaf Collimation, International Journal of Radiation Oncology.Biology.Physics, 50(3), 751- 758, 2001 https://doi.org/10.1016/S0360-3016(01)01487-0
  5. Wiggenraad RG, Petoukhova AL, Versluis L, and van Santvoort JP: Stereotactic Radiotherapy of Intracranial Tumors: A Comparison of Intensity- Modulated Radiotherapy and Dynamic Conformal Arc, International Journal of Radiation Oncology .Biology.Physics, 74(4), 1018-1026, 2009 https://doi.org/10.1016/j.ijrobp.2008.09.057
  6. Rice RK, Hansen JL, Svensson GK and Siddon RL: Measurements of Dose Distributions in Small Beams of 6 MV X-Rays, Physics in Medicine and Biology, 32(9), 1087-1099. 1987 https://doi.org/10.1088/0031-9155/32/9/002
  7. Bjarngard BE, Tsai JS, and Rice RK: Doses on the Central Axes of Narrow 6-MV X-Ray Beams, The International Journal of Medical Physics Research and Practice, 17(5), 794-799, 1990
  8. Laub WU and Wong T: The Volume Effect of Detectors in the Dosimetry of Small Fields used in IMRT, The International Journal of Medical Physics Research and Practice, 30(3), 341-347, 2003
  9. Das IJ, Cheng CW, and Watts RJ et al: Accelerator Beam Data Commissioning Equipment and Procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM, The International Journal of Medical Physics Research and Practice, 35(9), 4186-4215, 2008
  10. Eclipse Algorithms Reference Guide, P/N B5026 12R01A. Palo Alto, CA, Varian Medical Systems, 2009
  11. IAEA TRS-398: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water, Vienna, 2006(v.12)
  12. Almond PR, Biggs PJ, and Coursey BM et al: AAPM's TG-51 Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams, The International Journal of Medical Physics Research and Practice, 26(9), 1847- 1870, 1999
  13. Kim JK, Wen N, Jin JY et al: Clinical Commission and Use of the Novalis Tx Linear Accelerator for SRS and SBRT, Journal of Applied Clinical Medical Physics, 13(3), 124-151, 2012
  14. Haryanto F, Fippel M, Laub W, Dohm O, and Nusslin F: Investigation of Photon Beam Output Factors for Conformal Radiation Therapy-Monte Carlo Simulations and Measurements, Physics in Medicine and Biology , 47, N133-N143, 2002 https://doi.org/10.1088/0031-9155/47/11/401
  15. Cheng CW, Cho SH, Taylor M, and Das IJ: Determination of Zero-Field Size Percent Depth Doses and Tissue Maximum Ratios for Stereotactic Radiosurgery and IMRT Dosimetry: Comparison Between Experimental Measurements and Monte Carlo Simulation, The International Journal of Medical Physics Research and Practice, 34(8), 3149-3157, 2007
  16. Das IJ, Ding GX, and Ahnesjo A: Small Fields: Nonequilibrium Radiation Dosimetry, The International Journal of Medical Physics Research and Practice, 35(1), 206-215, 2008
  17. Francescon P, Cora S, and Cavedon C: Total Scatter Factors of Small Beams: A Multidetector and Monte Carlo Study, The International Journal of Medical Physics Research and Practice, 35(2), 504-513, 2008
  18. Li XA, Soubra M, Szanto J et al: Lateral Electron Equilibrium and Electron Contamination in Measurements of Head-Scatter Factors Using Mini-Phantoms and Brass Caps, The International Journal of Medical Physics Research and Practice, 22(7), 1167-1170, 1995
  19. RTOG 0236: A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I/II Non-Small Cell Lung Cancer, 2009