DOI QR코드

DOI QR Code

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae

  • Hong, Hao (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology) ;
  • Cui, Chang-Hao (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Kwang (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology) ;
  • Jin, Feng-Xie (College of Biotechnology, Dalian Polytechnic University) ;
  • Kim, Sun-Chang (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology) ;
  • Im, Wan-Taek (KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology)
  • Received : 2012.03.07
  • Accepted : 2012.07.20
  • Published : 2012.10.15

Abstract

This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.

Keywords

References

  1. Ernst E. Panax ginseng: An overview of the clinical evidence. J Ginseng Res 2010;34:259-263. https://doi.org/10.5142/jgr.2010.34.4.259
  2. Kim MH, Lee YC, Choi SY, Cho CW, Rho J, Lee KW. The changes of ginsenoside patterns in red ginseng processed by organic acid impregnation pretreatment. J Ginseng Res 2011;35:497-503. https://doi.org/10.5142/jgr.2011.35.4.497
  3. Wang L, Liu QM, Sung BH, An DS, Lee HG, Kim SG, Kim SC, Lee ST, Im WT. Bioconversion of ginsenosides Rb1, Rb2, Rc and Rd by novel $\beta$-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J Biotechnol 2011;156:125-133. https://doi.org/10.1016/j.jbiotec.2011.07.024
  4. Wang DM, Yu HS, Song JG, Xu YF, Jin FX. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multiglycosides of protopanaxatriol type ginsenosides. Process Biochem 2012;47:133-138. https://doi.org/10.1016/j.procbio.2011.10.026
  5. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  6. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-1160. https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  7. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Arch Pharm Res 2004;27:429-435. https://doi.org/10.1007/BF02980085
  8. Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, Surh YJ. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat Res 2003;523-524:75-85. https://doi.org/10.1016/S0027-5107(02)00323-8
  9. Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type $Ca^{2+}$ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun 2008;365:399-405. https://doi.org/10.1016/j.bbrc.2007.10.048
  10. Shin JY, Lee JM, Shin HS, Park SY, Yang JE, Cho SK, Yi TH. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats. J Ginseng Res 2012;36:86-92. https://doi.org/10.5142/jgr.2012.36.1.86
  11. Guan YY, Zhou JG, Zhang Z, Wang GL, Cai BX, Hong L, Qiu QY, He H. Ginsenoside-Rd from Panax notoginseng blocks $Ca^{2+}$ influx through receptor- and store-operated $Ca^{2+}$ channels in vascular smooth muscle cells. Eur J Pharmacol 2006;548:129-136. https://doi.org/10.1016/j.ejphar.2006.08.001
  12. Lee JK, Choi SS, Lee HK, Han KJ, Han EJ, Suh HW. Effects of ginsenoside Rd and decursinol on the neurotoxic responses induced by kainic acid in mice. Planta Med 2003;69:230-234. https://doi.org/10.1055/s-2003-38475
  13. Yang ZG, Sun HX, Ye YP. Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers 2006;3:187-197. https://doi.org/10.1002/cbdv.200690022
  14. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 2007;17:1937-1943.
  15. Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19. https://doi.org/10.1007/s00253-010-2567-6
  16. Kim BN, Yeom SJ, Kim YS, Oh DK. Characterization of a $\beta$-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol Lett 2012;34:125-129. https://doi.org/10.1007/s10529-011-0739-9
  17. An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK et al. Identifi cation and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol 2010;76:5827-5836. https://doi.org/10.1128/AEM.00106-10
  18. Yan Q, Zhou W, Li X, Feng M, Zhou P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing beta-glucosidase from Paecilomyces Bainier sp. 229. Biosci Biotechnol Biochem 2008;72:352-359. https://doi.org/10.1271/bbb.70425
  19. Son JW, Kim HJ, Oh DK. Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 2008;30:713-716. https://doi.org/10.1007/s10529-007-9590-4
  20. Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant $\beta$-glucosidase. Biotechnol Lett 2012;34:913-917. https://doi.org/10.1007/s10529-012-0849-z
  21. Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 2009;73:316-321. https://doi.org/10.1271/bbb.80525
  22. Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, Shi XL, Feng MQ. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces Bainier 229-7. Bioresour Technol 2010;101:7872-7876. https://doi.org/10.1016/j.biortech.2010.04.102
  23. Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-771. https://doi.org/10.1007/s10529-005-5632-y
  24. Quan LH, Min JW, Yang DU, Kim YJ, Yang DC. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant $\beta$-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 2012;94:377-384. https://doi.org/10.1007/s00253-011-3861-7
  25. Wu L, Jin Y, Yin C, Bai L. Co-transformation of Panax major ginsenosides Rb1 and Rg1 to minor ginsenosides C-K and F1 by Cladosporium cladosporioides. J Ind Microbiol Biotechnol 2012;39:521-527. https://doi.org/10.1007/s10295-011-1058-9

Cited by

  1. Sphingomonas ginsenosidivorax sp. nov., with the ability to transform ginsenosides vol.103, pp.6, 2013, https://doi.org/10.1007/s10482-013-9916-2
  2. Biotransformation, a Promising Technology for Anti-cancer Drug Development vol.14, pp.10, 2013, https://doi.org/10.7314/APJCP.2013.14.10.5599
  3. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII vol.36, pp.6, 2014, https://doi.org/10.1007/s10529-014-1472-y
  4. and its application in the glycosylation of ginsenoside Rh1 vol.60, pp.1, 2014, https://doi.org/10.1111/lam.12339
  5. Characterization of a Ginsenoside-Transforming β-glucosidase from Paenibacillus mucilaginosus and Its Application for Enhanced Production of Minor Ginsenoside F2 vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085727
  6. Identification and Characterization of a Ginsenoside-Transforming β-Glucosidase from Pseudonocardia sp. Gsoil 1536 and Its Application for Enhanced Production of Minor Ginsenoside Rg2(S) vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0096914
  7. Ginsenosides and their metabolites: a review of their pharmacological activities in the skin vol.307, pp.5, 2015, https://doi.org/10.1007/s00403-015-1569-8
  8. An amino acid at position 512 in β-glucosidase from Clavibacter michiganensis determines the regioselectivity for hydrolyzing gypenoside XVII vol.99, pp.19, 2015, https://doi.org/10.1007/s00253-015-6549-6
  9. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030359
  10. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083942
  11. vol.64, pp.12, 2016, https://doi.org/10.1021/acs.jafc.5b04098
  12. In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070725
  13. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22050844
  14. Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0524-9
  15. Enhancement of active compound, genipin, from Gardeniae Fructus using immobilized glycosyl hydrolase family 3 β-glucosidase from Lactobacillus antri vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0360-y
  16. vol.79, pp.19, 2013, https://doi.org/10.1128/AEM.01150-13
  17. Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside vol.58, pp.6, 2015, https://doi.org/10.1007/s13765-015-0113-z
  18. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review vol.21, pp.5, 2016, https://doi.org/10.3390/molecules21050645
  19. Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside vol.23, pp.4, 2012, https://doi.org/10.4014/jmb.1212.12053
  20. Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells vol.37, pp.2, 2012, https://doi.org/10.5142/jgr.2013.37.201
  21. Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG vol.26, pp.7, 2016, https://doi.org/10.4014/jmb.1601.01002
  22. Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity vol.27, pp.7, 2012, https://doi.org/10.4014/jmb.1701.01077
  23. Comparative analysis of the expression level of recombinant ginsenoside-transforming β -glucosidase in GRAS hosts and mass production of the ginsenoside Rh 2 -Mix vol.12, pp.4, 2012, https://doi.org/10.1371/journal.pone.0176098
  24. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling vol.18, pp.4, 2012, https://doi.org/10.2174/1570159x17666191101125530
  25. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology vol.117, pp.6, 2012, https://doi.org/10.1002/bit.27325
  26. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis vol.69, pp.1, 2021, https://doi.org/10.1021/acs.jafc.0c07424