DOI QR코드

DOI QR Code

Differential expression of cell surface markers in response to 2,4-dinitrofluorobenzene in RAW 264.7 and primary immune cells

  • Kim, Dong-Bum (Department of Microbiology, College of Medicine, Hallym University) ;
  • Park, Min-Chul (Department of Microbiology, College of Medicine, Hallym University) ;
  • Park, Byoung-Kwon (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwon, Sang-Hoon (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Choi, Joon-Ho (Department of Food Science and Biotechnology, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Hyun-Jong (Experimental Animal Center, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Science, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Received : 2012.03.06
  • Accepted : 2012.03.23
  • Published : 2012.09.30

Abstract

We evaluated the expression of the costimulatory molecules CD80 and CD83 and major histocompatibility (MHC) class II induced by 2,4-dinitrofluorobenzene (DNFB) in the RAW 264.7 macrophage cell line. In contrast to the previously reported effect of DNFB on dendritic cells, CD86 expression did not change. Furthermore, we observed that the CD83 expression level transiently increased and then decreased. Induction of CD80 and MHC class II molecule expression and a decrease in CD83 expression by DNFB in vitro were also confirmed in splenocytes of BALB/c and NC/Nga mice. However, DNFB did not influence CD83 expression in peritoneal $CD11b^+$ cells from BALB/c or NC/Nga mice. Detailed in vivo experiments and further studies on the possible contribution of $CD11b^+$ cells to induce atopic dermatitis (AD) would be helpful to attain a better understanding of AD pathogenesis.

Keywords

References

  1. Kitagaki, H., Ono, N., Hayakawa, K., Kitazawa, T., Watanabe, K. and Shiohara, T. (1997) Repeated elicitation of contact hypersensitivity induces a shift in cutaneous cytokine milieu from a T helper cell type 1 to a T helper cell type 2 profile. J. Immunol. 159, 2484-2491.
  2. Akdis, C. A., Akdis, M., Trautmann, A. and Blaser, K. (2000) Immune regulation in atopic dermatitis. Curr. Opin. Immunol. 12, 641-646. https://doi.org/10.1016/S0952-7915(00)00156-4
  3. Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H. and Matsushima, K. (1999) Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Invest. 104, 1097-1105. https://doi.org/10.1172/JCI7613
  4. Ahmed, A. R. and Blose, D. A. (1983) Delayed-type hypersensitivity skin testing. A review. Arch. Dermatol. 119, 934-945. https://doi.org/10.1001/archderm.1983.01650350062019
  5. Kitagaki, H., Fujisawa, S., Watanabe, K., Hayakawa, K. and Shiohara, T. (1995) Immediate-type hypersensitivity response followed by a late reaction is induced by repeated epicutaneous application of contact sensitizing agents in mice. J. Invest. Dermatol. 105, 749-755. https://doi.org/10.1111/1523-1747.ep12325538
  6. Nagai, H., Matsuo, A., Hiyama, H., Inagaki, N. and Kawada, K. (1997) Immunoglobulin E production in mice by means of contact sensitization with a simple chemical, hapten. J. Allergy Clin. Immunol. 100, S39-44. https://doi.org/10.1016/S0091-6749(97)70003-4
  7. Tomimori, Y., Tanaka, Y., Goto, M. and Fukuda, Y. (2005) Repeated topical challenge with chemical antigen elicits sustained dermatitis in NC/Nga mice in specific-pathogen- free condition. J. Invest. Dermatol. 124, 119-124. https://doi.org/10.1111/j.0022-202X.2004.23516.x
  8. Enk, A. H. (1997) Allergic contact dermatitis: understanding the immune response and potential for targeted therapy using cytokines. Mol. Med. Today 3, 423-428. https://doi.org/10.1016/S1357-4310(97)01087-3
  9. Coutant, K. D., de Fraissinette, A. B., Cordier, A. and Ulrich, P. (1999) Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol. Sci. 52, 189-198. https://doi.org/10.1093/toxsci/52.2.189
  10. Kaplan, D. H. (2010) In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31, 446-451. https://doi.org/10.1016/j.it.2010.08.006
  11. Tuschl, H. and Kovac, R. (2001) Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol. In Vitro 15, 327-331. https://doi.org/10.1016/S0887-2333(01)00030-3
  12. Pepin, E., Goutet, M. and Ban, M. (2007) Murine bone marrow-derived dendritic cells as a potential in vitro model for predictive identification of chemical sensitizers. Toxicol. Lett. 175, 89-101. https://doi.org/10.1016/j.toxlet.2007.09.012
  13. Herouet, C., Cottin, M., LeClaire, J., Enk, A. and Rousset, F. (2000) Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells. In Vitr. Mol. Toxicol. 13, 113-123. https://doi.org/10.1089/109793300440703
  14. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. (2005) Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol. Cell Biol. 83, 607-614. https://doi.org/10.1111/j.1440-1711.2005.01378.x
  15. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. (2005) DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. J. Dermatol. Sci. 39, 113-123. https://doi.org/10.1016/j.jdermsci.2005.03.011
  16. Vital, A. L., Goncalo, M., Cruz, M. T., Figueiredo, A., Duarte, C. B. and Celeste Lopes, M. (2004) The sensitizers nickel sulfate and 2,4-dinitrofluorobenzene increase CD40 and IL-12 receptor expression in a fetal skin dendritic cell line. Biosci. Rep. 24, 191-202. https://doi.org/10.1007/s10540-005-2580-7
  17. Dupasquier, M., Stoitzner, P., van Oudenaren, A., Romani, N. and Leenen, P. J. (2004) Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J. Invest. Dermatol. 123, 876-879. https://doi.org/10.1111/j.0022-202X.2004.23427.x
  18. Tuckermann, J. P., Kleiman, A., Moriggl, R., Spanbroek, R., Neumann, A., Illing, A., Clausen, B. E., Stride, B., Förster, I., Habenicht, A. J., Reichardt, H. M., Tronche, F., Schmid, W. and Schütz, G. (2007) Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J. Clin. Invest. 117, 1381-1390. https://doi.org/10.1172/JCI28034
  19. Kim, D., Kim, J., Kwon, S., Kim, Y. J., Lee, S., Lee, Y., Seo, J. N., Park, C. S., Park, K. L. and Kwon, H. J. (2008) Regulation of macrophage inflammatory protein-2 gene expression in response to 2,4-dinitrofluorobenzene in RAW 264.7 cells. BMB Rep. 41, 316-321. https://doi.org/10.5483/BMBRep.2008.41.4.316
  20. Kim, D., Kim, Y. J., Seo, J. N., Kim, J., Lee, Y,, Park, C. S., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) 2,4-Dinitrofluorobenzene modifies cellular proteins and incuces macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells. Immunol. Invest. 38, 132-152. https://doi.org/10.1080/08820130802667499
  21. Kim, Y. J., Kim, D., Lee, Y., Choi, S. Y., Park, J., Lee, S. Y., Park, J. W. and Kwon, H. J. (2009) Effects of nanoparticulate saponin-platinum conjugates on 2,4-dinitrofluorobenzene- induced macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells. BMB Rep. 42, 304-309. https://doi.org/10.5483/BMBRep.2009.42.5.304
  22. Leung, D. Y. (1997) Atopic dermatitis: immunobiology and treatment with immune modulators. Clin. Exp. Immunol. 107(Suppl), 25-30.
  23. Rudikoff, D. and Lebwohl, M. (1998) Atopic dermatitis. Lancet 351, 1715-1721. https://doi.org/10.1016/S0140-6736(97)12082-7
  24. Novak, N., Bieber, T. and Leung, D. Y. (2003) Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol. 112(Suppl), S128-139. https://doi.org/10.1016/j.jaci.2003.09.032
  25. An, S., Kim, S., Huh, Y., Lee, T. R., Kim, H. K., Park, K. L. and Eun, H. C. (2009) Expression of surface markers on the human monocytic leukaemia cell line, THP-1, as indicators for the sensitizing potential of chemicals. Contact Dermatitis 60, 185-192. https://doi.org/10.1111/j.1600-0536.2009.01528.x
  26. Kim, D., Jung, J., Lee, Y. and Kwon, H. J. (2011) Novel immunostimulatory phosphodiester oligodeoxynucleotides with CpT sequences instead of CpG motifs. Mol. Immunol. 48, 1494-1504. https://doi.org/10.1016/j.molimm.2011.04.009

Cited by

  1. A new concept for the treatment of atopic dermatitis: Silver–nanolipid complex (sNLC) vol.462, pp.1-2, 2014, https://doi.org/10.1016/j.ijpharm.2013.12.044