DOI QR코드

DOI QR Code

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed

충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교

  • Joh, Hyung-Kyung (Weather Information Service Center) ;
  • Park, Jong-Yoon (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Jang, Cheol-Hee (Hydrologic Cycle Research Team, Korea Institute of Construction Technology) ;
  • Kim, Seong-Joon (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 조형경 (건국대학교 대학원 사회환경시스템공학과, 차세대도시농림융합기상사업단) ;
  • 박종윤 (건국대학교 대학원 사회환경시스템공학과) ;
  • 장철희 (건국대학교 대학원 사회환경시스템공학과, 한국건설기술연구원 수자원연구실) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학과)
  • Received : 2011.09.29
  • Accepted : 2012.06.08
  • Published : 2012.09.30

Abstract

To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

SWAT(Soil and Water Assessment Tool) 모형의 적용성 검증을 위해서는 매개변수 민감도 분석 및 검 보정, 예측 불확실성 분석을 필요로 한다. 최근 SWAT 모형의 불확실성을 분석하기 위한 다양한 기법들이 개발되었는데, 본 연구는 충주댐 유역(6,581.1 $km^2$)을대상으로유역출구점의 실측 일 유출량자료(1998~2003)를 바탕으로 SWAT 모형의 유출관련 매개변수에 대한 불확실성 분석을 실시하였다. 이때 사용된 분석 기법으로는 SUFI2 (Sequential Uncertainty FItting algorithm ver.2), GLUE(Generalized Likelihood Uncertainty Estimation), ParaSol (Parameter Solution) 등을 적용하였다. 이러한 기법은 모두 SWAT-CUP (SWAT-Calibration Uncertainty Program; Abbaspour et al., 2007) 모형에 탑재되어있으며, 모형의 결과로써 검 보정, 매개변수의 민감도 분석, 각종 목적 함수 및 불확실성의 범위 등이 자동으로 산출되므로 모형의 사용자가 불확실성 평가 기법의 분석 및 비교를 손쉽게 할 수 있다. 그 결과 대표적인 목적 함수인 결정 계수($R^2$; Legates and McCabe, 1999)와 NS (Nash and Sutcliffe, 1970) 모형효율은 모두 0.67에서 0.92 사이의 값을 나타내어 대체적으로 모의가 잘 이루어졌음을 알 수 있었다. 그러나 불확실성의 범위를 나타내는 지표인 p-factor 및 r-factor에서는 평가 기법 별로 그 차이가 확연하게 드러났다. 여기서 p-factor는 불확실성 범위에 실측치가 포함되는 비율이며, r-factor는 불확실성의 상대적인 범위로 각각 1과 0에 가까울수록 모의기법의 성능이 우수함을 의미한다. 세가지 알고리듬 중에서 SUFI2의 p-factor가 약 0.79로 가장 높게 나타났으며, ParaSol의 r-factor가 0.03으로 가장 작게 나타났다. 본 연구의 결과는 SWAT 모형을 이용한 수문 모의에서 수문분석에 따른 예측결과의 불확실성을 정량적으로 평가함으로서, 모형의 적용성 평가 및 모의결과의 신뢰성 확보에 근거자료로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. 이효상, 전민우, 발린 다니엘라, 로드 미하엘 (2009). "강우 자료의 확실성을 고려한 강우 유출모형의 적용."한국수자원학회논문집, 한국수자원학회, 제 42권, 제 10호, pp. 773-783.
  2. Abbaspour, K.C. (2009). SWAT-CUP user manual. Dept. of System Analysis, Integrated Assessment and Modelling, Swiss Federal Institute of Aquatic Science and Technology Duebendorf, Switzerland.
  3. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobris, J., and Srinivasan, R. (2007). "Modelling hydrology and water quality in the prealpine/ alpine Thur watershed using SWAT." Journal of Hydrology, Vol. 333, pp. 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  4. Ajami, N.K., Duan, Q.Y., and Sorooshian, S. (2007). "An integrated hydrologic Bayesian multimodal combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction." Water Resources Research, Vol. 43, No. 1, Art. No. W01403.
  5. Arnold, J.G., and Allen. P.M. (1996). "Estimating hydrologic budgets for three illinois watershed." Journal of Hydrology, Vol. 176, pp. 57-77. https://doi.org/10.1016/0022-1694(95)02782-3
  6. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment-Prat 1: Model development." Journal of the American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  7. Bastidas, L.A., Gupta, H., Hsu, VK-1., and Sorooshian, S. (2003). Parameter, structure, and model performance evaluation for land-surface schemes. In: Duan, Q., Sorroshian, S., Gupta, H., Rosseau, H., and Turcotte, R. (Eds.). "Calibration of Watershed Models." Water Science and Applications, Vol. 6, pp. 239-254. https://doi.org/10.1029/WS006p0239
  8. Beven, K. (2001). Rainfall-runoff modeling-The primer. John Wiley and Sons.
  9. Beven, K., and Binley, A. (1992). "The future of distributed models-model calibration and uncertainty prediction." Hydrological Process, Vol. 6, No. 3, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  10. Beven, K., and Freer, J. (2001). "Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology." Journal of Hydrology, Vol. 249, No, 1-4. pp. 11-29. https://doi.org/10.1016/S0022-1694(01)00421-8
  11. Gupta, H.V., Beven, K.J., and Wagner, T. (2005). "Model calibration and uncertainty estimation." In: Anderson, M.G. (Ed.). "Encyclopedia of Hydrological Science." John Wiley, New York. pp. 2015-2031.
  12. Hapuarachchi, H.A.P., Zhijia, L., and Shouhui, W. (2001). "Application of SCE-UA method for Calibrating the Xinanjiang watershed model." Journal of Lake Sciences, Vol. 12, No. 4, pp. 304-314.
  13. Hornberger, G.M., and Spear, R.C. (1981). "An approach to the preliminary-analysis of environmental system." Journal of Environmental Management, Vol. 12, No. 1, pp. 7-18.
  14. Jakeman, A.J., and Hornberger, G.M. (1993). "How much complexity is warranted in rainfall-runoff model." Water Resources Research, Vol. 29, No. 8, pp. 2637-2649. https://doi.org/10.1029/93WR00877
  15. Kuczera, G., and Mroczkowski, M. (1998). "Assessment of hydrological parameter uncertainty and the worth of multi-response data." Water Resources Research, Vol. 34, pp. 1481-1489. https://doi.org/10.1029/98WR00496
  16. Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of goodness-of-fit measures in hydrologic and model validation." Water Resources Research, Vol. 35, pp. 233-241. https://doi.org/10.1029/1998WR900018
  17. Manguerra, H.B., and Engel, B.A. (1998). "Hydrologic parameterization of watersheds for runoff prediction using SWAT." Journal of the American Resources Association, JAWRA, Vol. 34, No. 5, pp. 1149-1162. https://doi.org/10.1111/j.1752-1688.1998.tb04161.x
  18. Moradkahni, H., Hsu, K.L., Gupta, H., and Sorooshian, S. (2005). "Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter." Water Resources Research, Vol. 41, Art. No. W05012, doi: 10.1029.2004WR003604.
  19. Nash, J.E., and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models: Part I. "A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 283-290.
  20. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2005). Soil and water assessment tool theoretical documentation version 2005: Draft-january 2005. Temple, TX, USA: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station.
  21. Peterson, J.R., and Hamlett, J.M. (1998). "Hydrologic calibration of the SWAT model in a watershed containing Fragipan soils." Journal of the American Water Resources Association, JAWRA, Vol. 34, No. 3, pp. 531-544. https://doi.org/10.1111/j.1752-1688.1998.tb00952.x
  22. Reichert, P., and Mieleitner, J. (2009). "Analyzing input and structural uncertainty of a hydrological model with stochastic, time-dependent parameters." Water Resources Research, Vol. 45, Art. No. W10402. doi: 10.1029/2009WR007814.
  23. Seibert, J., and McDonnell, J.J. (2003). The quest for an improved dialog between modeler and experimentalist. In: Duan, Q., Sorooshian, S., Gupta, H., Rosseau, H., and Turcotte, R. (Eds.). "Calibration of watershed models." Water Science and Applications, Vol. 6, pp. 301-316. https://doi.org/10.1029/WS006p0301
  24. Sophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., and Perkins, S.P. (1999). "Integrated numerical modeling for basin-wide water management: The case of the rattlesnake creek basin in south-central Kansas." Journal of Hydrology, Vol. 214, No. 1, pp. 179-196. https://doi.org/10.1016/S0022-1694(98)00289-3
  25. van Griensve, A., and Meixner, T. (2006). "Methods to quantify and identify the sources of uncertainty for river basin water quality models." Water Science and Technology, Vol. 53, No. 1, pp. 51-59. https://doi.org/10.2166/wst.2006.007
  26. Vrugt, J.A., Diks, C.G., Bouten, W., Gupta, H.V., and Verstraten, J.M. (2005). "Towards a complete treatment of uncertainty in hydrologic modeling: combining the strength of global optimization and data assimilation." Water Resources Research, Vol. 41. Art. No. W01017, doi: 10.1029/2004WR003059.
  27. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China." Journal of Hydrology, Vol. 358. pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012

Cited by

  1. Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models vol.30, pp.5, 2014, https://doi.org/10.15681/KSWE.2014.30.5.549