DOI QR코드

DOI QR Code

Data Interpretation Methods for Petroleomics

  • Islam, Annana (Kyungpook National University, Department of Chemistry) ;
  • Cho, Yun-Ju (Kyungpook National University, Department of Chemistry) ;
  • Ahmed, Arif (Kyungpook National University, Department of Chemistry) ;
  • Kim, Sung-Hwan (Kyungpook National University, Department of Chemistry)
  • Received : 2012.09.04
  • Accepted : 2012.09.12
  • Published : 2012.09.20

Abstract

The need of heavy and unconventional crude oil as an energy source is increasing day by day, so does the importance of petroleomics: the pursuit of detailed knowledge of heavy crude oil. Crude oil needs techniques with ultra-high resolving capabilities to resolve its complex characteristics. Therefore, ultra-high resolution mass spectrometry represented by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been successfully applied to the study of heavy and unconventional crude oils. The analysis of crude oil with high resolution mass spectrometry (FT-ICR MS) has pushed analysis to the limits of instrumental and methodological capabilities. Each high-resolution mass spectrum of crude oil may routinely contain over 50,000 peaks. To visualize and effectively study the large amount of data sets is not trivial. Therefore, data processing and visualization methods such as Kendrick mass defect and van Krevelen analyses and statistical analyses have played an important role. In this regard, it will not be an overstatement to say that the success of FT-ICR MS to the study of crude oil has been critically dependent on data processing methods. Therefore, this review offers introduction to peotroleomic data interpretation methods.

Keywords

References

  1. Schaefer, C.; Weber, C.; Voss, A. Energy 2003, 28, 411. https://doi.org/10.1016/S0360-5442(02)00154-8
  2. Klass, D. L. Energy Policy 2003, 31, 353. https://doi.org/10.1016/S0301-4215(02)00069-1
  3. Thoma, M. Energy Econ. 2004, 26, 463. https://doi.org/10.1016/j.eneco.2004.04.006
  4. Dahlquist, E.; Thorin, E.; Yan, J. Int. J. of Energy Re. 2007, 31, 1226. https://doi.org/10.1002/er.1330
  5. Szklo, A.; Schaeffer, R. Energy 2006, 31, 2513. https://doi.org/10.1016/j.energy.2005.11.001
  6. Barrow, M. P. Biofuels 2010, 1, 651. https://doi.org/10.4155/bfs.10.55
  7. Headley, J. V.; Peru, K. M.; Barrow, M. P. Mass Spectrom. Rev. 2009, 28, 121. https://doi.org/10.1002/mas.20185
  8. Ortiz-Cruz, A.; Rodriguez, E.; Ibarra-Valdez, C.; Alvarez-Ramirez, J. Energy Policy 2012, 41, 365. https://doi.org/10.1016/j.enpol.2011.10.057
  9. Hsieh, M.; Philp, R. P.; del Rio, J. C. Org. Geochem. 2000, 31, 1581. https://doi.org/10.1016/S0146-6380(00)00085-1
  10. Chiaberge, S.; Fiorani, T.; Savoini, A.; Bionda, A.; Ramello, S.; Pastori, M.; Cesti, P. Fuel Proc. Tech.
  11. Hsu, C. S.; Hendrickson, C. L.; Rodgers, R. P.; McKenna, A. M.; Marshall, A. G. J. Mass Spec. 2011, 46, 337. https://doi.org/10.1002/jms.1893
  12. Rodgers, R. P.; McKenna A. M. Anal. Chem. 2011, 83, 4665. https://doi.org/10.1021/ac201080e
  13. Marshall, A. G.; Rodgers, R. P. Proc. Natl. Acad. Sci.2008, 105, 18090. https://doi.org/10.1073/pnas.0805069105
  14. Yassaa, N.; Meklati, B. Y.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P. Atm. Environ. 2001, 35, 787. https://doi.org/10.1016/S1352-2310(00)00238-7
  15. Kujawinski, E. B. Environ. Foren. 2002, 3, 207. https://doi.org/10.1080/713848382
  16. Miyabayashi, K.; Naito, Y.; Tsujimoto, K.; Miyake, M. Int. J. Mass Spec. 2004, 235, 49. https://doi.org/10.1016/j.ijms.2004.04.001
  17. Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Mass Spec. Rev. 1998, 17, 1. https://doi.org/10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K
  18. Niedner-Schatteburg, G.; Silha, J.; Schindler, T.; Bondybey, V. E. Chem. Phys. Lett. 1991, 187, 60. https://doi.org/10.1016/0009-2614(91)90484-Q
  19. Marshall, A. G.; Rodgers, R. P. Acc. Chem. Res. 2004, 37, 53. https://doi.org/10.1021/ar020177t
  20. Xian, F.; Corilo, Y. E.; Hendrickson, C. L.; Marshall, A. G. Int.J. Mass Spec. 2012, 325-327, 67. https://doi.org/10.1016/j.ijms.2012.06.007
  21. Carlsohn, E.; Ångström, J.; Emmett, M. R.; Marshall, A. G.; Nilsson, C. L. Int. J. Mass Spec. 2004, 234, 137. https://doi.org/10.1016/j.ijms.2004.02.021
  22. Rodgers, R. P.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G.; Greaney, M.; Qian, K. Canadian J. of Chem. 2001, 79, 546. https://doi.org/10.1139/v00-153
  23. Blakney, G. T.; Hendrickson, C. L.; Marshall, A. G. Int. J. Mass Spec. 2011, 306, 246. https://doi.org/10.1016/j.ijms.2011.03.009
  24. Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336. https://doi.org/10.1021/ac034415p
  25. Hughey, C. A.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2001, 73, 4676. https://doi.org/10.1021/ac010560w
  26. Gorshkov, M. V.; Nikolaev, E. N. Int. J. Mass Spec. Ion Proc. 1993, 125, 1. https://doi.org/10.1016/0168-1176(93)80012-4
  27. Kazazic, S.; Zhang, H.-M.; Schaub, T. M.; Emmett, M. R.; Hendrickson, C. L.; Blakney, G. T.; Marshall, A. G. J. Am. Soc. Mass Spec. 2010, 21, 550. https://doi.org/10.1016/j.jasms.2009.12.016
  28. Kendrick, E. Anal. Chem. 1963, 35, 2146. https://doi.org/10.1021/ac60206a048
  29. Roach, P. J.; Laskin, J.; Laskin, A. Anal. Chem. 2011, 83, 4924. https://doi.org/10.1021/ac200654j
  30. van Krevelen, D. Fuel 1950, 269.
  31. Bae, E.; Na, J. G.; Chung, S. H.; Kim, H. S.; Kim, S. Energy Fuels 2010, 24, 2563. https://doi.org/10.1021/ef100060b
  32. Kim, Y. H.; Kim, S. J. Am. Soc. Mass Spec. 2010, 21, 386. https://doi.org/10.1016/j.jasms.2009.11.001
  33. Cho, Y.; Kim, Y. H.; Kim, S. Anal. Chem. 2011, 83, 6068. https://doi.org/10.1021/ac2011685
  34. Purcell, J. M.; Merdrignac, I.; Rodgers, R. P.; Marshall, A. G.; Gauthier, T.; Guibard, I. Energy Fuels 2010, 24, 2257. https://doi.org/10.1021/ef900897a
  35. Hsu, C. S.; Lobodin, V. V.; Rodgers, R. P.; McKenna, A. M.; Marshall, A. G. Energy Fuels 2011, 25, 2174. https://doi.org/10.1021/ef2004392
  36. Lobodin, V. V.; Marshall, A. G.; Hsu, C. S. Anal. Chem. 2012, 84, 3410. https://doi.org/10.1021/ac300244f
  37. Hur, M.; Yeo, I.; Park, E.; Kim, Y. H.; Yoo, J.; Kim, E.; No, M. H.; Koh, J.; Kim, S. Anal. Chem. 2010, 82, 211. https://doi.org/10.1021/ac901748c
  38. Hur, M.; Yeo, I.; Kim, E.; No, M. H.; Koh, J.; Cho, Y. J.; Lee, J. W.; Kim, S. Energy Fuels 2010, 24, 5524. https://doi.org/10.1021/ef1007165
  39. Fernandez-Lima, F. A.; Becker, C.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G.; Russell, D. H. Anal. Chem. 2009, 81, 9941. https://doi.org/10.1021/ac901594f
  40. Ahmed, A.; Cho, Y. J.; No, M.-H.; Koh, J.; Tomczyk, N.; Giles, K.; Yoo, J. S.; Kim, S. Anal. Chem. 2010, 83, 77.

Cited by

  1. Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry vol.101, 2016, https://doi.org/10.1016/j.orggeochem.2016.08.005
  2. Tracing the Compositional Changes of Asphaltenes after Hydroconversion and Thermal Cracking Processes by High-Resolution Mass Spectrometry vol.29, pp.10, 2015, https://doi.org/10.1021/acs.energyfuels.5b01510
  3. Advanced analytical techniques for bio-oil characterization vol.5, pp.6, 2016, https://doi.org/10.1002/wene.208
  4. Development and Application of a Software Tool for the Interpretation of Organic Mixtures' Spectra - Hydrogen Deuterium Exchange (STORM-HDX) to Interpret APPI HDX MS Spectra vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.749
  5. Characterisation of ship diesel primary particulate matter at the molecular level by means of ultra-high-resolution mass spectrometry coupled to laser desorption ionisation—comparison of feed fuel, filter extracts and direct particle measurements vol.407, pp.20, 2015, https://doi.org/10.1007/s00216-014-8408-1
  6. A reformulated aromaticity index equation under consideration for non-aromatic and non-condensed aromatic cyclic carbonyl compounds vol.95, 2016, https://doi.org/10.1016/j.orggeochem.2016.02.002
  7. Effect of Storage and Hydrodesulfurization on the Ketones in Fossil Fuels vol.29, pp.2, 2015, https://doi.org/10.1021/ef5028108
  8. Petroleomic Characterization of Pyrolysis Bio-oils: A Review vol.31, pp.10, 2017, https://doi.org/10.1021/acs.energyfuels.7b00826
  9. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials vol.87, pp.13, 2015, https://doi.org/10.1021/acs.analchem.5b00785