DOI QR코드

DOI QR Code

Detection of Clostridium difficile by Loop-Mediated Isothermal Amplification

등온증폭법을 이용한 Clostridium difficile 검출

  • In, Ye-Won (Dept. of Food and Nutrition, Kookmin University) ;
  • Ha, Su-Jeong (Dept. of Food and Nutrition, Kookmin University) ;
  • Yang, Seung-Kuk (Dept. of Food and Nutrition, Kookmin University) ;
  • Oh, Se-Wook (Dept. of Food and Nutrition, Kookmin University)
  • 인예원 (국민대학교 식품영양학과) ;
  • 하수정 (국민대학교 식품영양학과) ;
  • 양승국 (국민대학교 식품영양학과) ;
  • 오세욱 (국민대학교 식품영양학과)
  • Received : 2012.05.18
  • Accepted : 2012.07.10
  • Published : 2012.09.30

Abstract

This study was conducted to develop a loop-mediated isothermal amplification (LAMP) method for the detection of Clostridium difficile. The tested target gene was 16S ribosomal RNA. Five different LAMP primer sets were designed, and LAMP was performed. All primer sets targeting the 16S rRNA gene (BIP, FIP, B3, F3, LF, PF) were determined as positive in tcdA-positive, tcdB-postive ($A^+B^+$) and tcdA-negative, tcdB-negative ($A^-B^-$) Clostridium difficile strains. As the LAMP reaction took less than 80 min and did not require expensive machine such as thermocycler, it can be used as a rapid and simple detection method for foodborne pathogens.

본 연구는 loop-mediated isothermal amplification(LAMP)을 이용하여 Clostridium difficile을 검출하고자 하였다. LAMP 수행을 위하여 선택적인 타깃 유전자로 C. difficile의 16S ribosomal RNA를 타깃으로 하여 primer set를 구성하였다. 5개의 primer set(BIP, FIP, B3, F3, LF, PF)를 이용하여 TcdA와 TcdB toxin이 모두 양성인 균주, TcdA와 TcdB toxin이 모두 음성인 균주와 식품 분리균주를 효과적으로 검출할 수 있었다. LAMP는 80분 이내의 시간이 필요하며 thermocycler와 같은 장비를 필요로 하지 않고 또한 결과를 직접 눈으로 확인할 수 있기 때문에 식품 생산 현장에서 활용될 수 있을 것이라고 생각되었다.

Keywords

References

  1. Larson HE, Price AB, Honour P, Borriello SP. 1978. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1: 1063-1066.
  2. Lee YJ, Choi MG, Lim CH, Jung WR, Cho HS, Sung HY, Nam KW, Chang JH, Cho YK, Park JM, Kim SW, Chung IS. 2010. Change of Clostridium difficile colitis during recent 10 years in Korea. Korean J Gastroenterol 55: 169-174. https://doi.org/10.4166/kjg.2010.55.3.169
  3. Ricciardi R, Rothenberger DA, Mandoff RD, Baxter NN. 2007. Increasing prevalence and severity of Clostridium difficile colitis in hospitalized patients in the United States. Arch Surg 142: 624-631. https://doi.org/10.1001/archsurg.142.7.624
  4. Pepin J, Valiquette L, Cossette B. 2005. Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by hyper virulent strain in Quebec. CMAJ 173: 1037-1042. https://doi.org/10.1503/cmaj.050978
  5. Tae CH, Jung SA, Song HJ, Kim SE, Choi HJ, Lee M, Hwang Y, Kim H, Lee K. 2009. The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea. J Korean Med Sci 24: 520-524. https://doi.org/10.3346/jkms.2009.24.3.520
  6. O'Connor JR, Johnson S, Gerding DN. 2009. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136: 1913-1924. https://doi.org/10.1053/j.gastro.2009.02.073
  7. Rodriguez-Palacios A, Staempfli HR, Duffield T, Weese JS. 2007. Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13: 485-487. https://doi.org/10.3201/eid1303.060988
  8. Songer JG. 2004. The emergence of Clostridium difficile as a pathogen of food animals. Anim Health Res Rev 5: 321-326. https://doi.org/10.1079/AHR200492
  9. McDonald LC. 2009. Surveillance for Disease and Sources of Infection: Initiatives at the Federal Level and International. Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention. Atlanta, GA, USA.
  10. FDA. 2010. Draft Guidance for Industry and Food and Drug Administration Staff-Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of Clostridium difficile. November 29, 2010. Food and Drug Administration, New Hampshire, MD, USA.
  11. Gould LH, Limbago B. 2010. Clostridium difficile in food and domestic animals: a new foodborne pathogen? Clin Infec Dis 51: 577-582. https://doi.org/10.1086/655692
  12. Lawley R. Clostridium difficile-a food safety hazard? http://www.foodsafetywatch.com/public/617.cfm
  13. Patel JB, Leonard DG, Pan X, Musser JM, Berman RE, Nachamkin I. 2000. Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38: 246-251.
  14. Harmsen D, Rothgänger J, Frosch M, Albert J. 2002. RIDOM: Ribosomal differentiation of medical microorganisms database. Nucleic Acids Res 30: 416-417. https://doi.org/10.1093/nar/30.1.416
  15. Lemee L, Dhalluim A, Testelin S, Mattrat MA, Maillard K, Lemeland JF, Pons JL. 2004. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxinA), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile. J Clin Microbiol 42: 5710-5714. https://doi.org/10.1128/JCM.42.12.5710-5714.2004
  16. Matamouros S, England P, Dupuy B. 2007. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64: 1274-1288. https://doi.org/10.1111/j.1365-2958.2007.05739.x
  17. Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Steiber C. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181: 29-38. https://doi.org/10.1016/S0378-1119(96)00398-8
  18. Cohen SH, Tang YJ, Silva J Jr. 2000. Analysis of the pathogenicity locus in Clostridium difficile strains. J Infect Dis 181: 659-663. https://doi.org/10.1086/315248
  19. Mori Y, Nagamine K, Tomita N, Notomi T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289: 150-154. https://doi.org/10.1006/bbrc.2001.5921
  20. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucl Acid Res 28: e63. https://doi.org/10.1093/nar/28.12.e63
  21. Kato H, Yokoyama T, Kato H, Arakawa Y. 2005. Rapid and simple method for detecting the toxin B gene of Clostridium difficile in stool specimens by loop-mediated isothermal amplification. J Clin Microbiol 43: 6108-6112. https://doi.org/10.1128/JCM.43.12.6108-6112.2005
  22. Noren T, Alriksson I, Andersson J, Akerlund T, Unemo M. 2011. Rapid and sensitive loop-mediated isothermal amplification test for Clostridium difficile detection challenges cytotoxin B cell test and culture as gold standard. J Clin Microbiol 49: 710-711. https://doi.org/10.1128/JCM.01824-10