초록
In order to overcome the hardware complexity and power consumption problems, recently the multi-core architecture has been prevalent. For hardware simplicity, usually RISC processor is adopted as the unit core processor. However, if the performance of unit core processor is enhanced, the overall performance of the multi-core processor architecture can be further increased. In this paper, out-of-order superscalar processor is utilized for the multi-core processor architecture. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the out-of-order superscalar cores between 2 and 16 extensively. As a result, the 16-core out-of-order superscalar processor for the window size of 16 resulted in 17.4 times speed up over the single-core out-of-order superscalar processor, and 50 times speed up over the single core RISC processor. When compared for the same number of cores on the average, the multi-core out-of-order superscalar processor performance achieved 3.2 times speed up over the multi-core RISC processor and 1.6 times speed up over the multi-core in-order superscalar processor.