DOI QR코드

DOI QR Code

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Shin, Sang-Hun (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jong-Jin (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jung, Ju-Ang (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Ji-Hyun (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2012.03.12
  • 심사 : 2012.04.09
  • 발행 : 2012.08.25

초록

Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

키워드

참고문헌

  1. J. Hou, Q.J. Peng, Y. Takeda, J. Kuniya, T. Shoji, J.Q. Wang, E.H. Han and W. Ke, "Microstructure and mechanical property of the fusion boundary region in an Alloy 182- low alloy steel dissimilar weld joint," J. Mater. Sci., vol. 45, pp. 5332 (2010) https://doi.org/10.1007/s10853-010-4581-6
  2. M. Sireesha, S.K. Albert, V. Shankar and S. Sundaresan, "A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800," J. Nucl.Mater., vol. 279, pp. 65 (2000) https://doi.org/10.1016/S0022-3115(99)00275-5
  3. J.I. Bennetch, G.E. Modzelewski, L.L. Spain and G.V. Rao, "Root Cause Evaluation and Repair of Alloy 82/182 J-Groove Weld Cracking of Reactor Vessel Head Penetrations at North Anna Unit 2", ASME PVP, vol. 437, pp. 179 (2002)
  4. G.F. Li, J. Congleton, "Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 2928C,"Corrosion Sci., vol. 42, pp. 1005 (2000) https://doi.org/10.1016/S0010-938X(99)00131-6
  5. C.H. Jang, J.H. Lee, J.S. Kim and T.E. Jin, "Mechanical Properties Evaluation in Inconel 82/182 Dissimilar Metal Welds," J. PVP, vol. 85, pp. 635 (2008)
  6. J.Y. Koo and A. Ozekcin, Welding Metallurgy of Structure Steels, p. 119, The Metallurgical Society, New Jersey (1987)
  7. H.T. Lee, S.L. Jeng, C.H. Yen and T.Y. Kuo, "Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition," J. Nucl. Mater., vol. 335, pp.59 (2004) https://doi.org/10.1016/j.jnucmat.2004.06.004
  8. H.P. Seifert, S. Ritter, T. shoji, Q.J. Peng, Y. Takeda and Z.P. Lu, "Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment," J. Nucl. Mater., vol. 378, pp. 197 (2008) https://doi.org/10.1016/j.jnucmat.2008.06.034
  9. T.W. Nelson, J.C. Lippold and M.J. Mills, "Nature and Evolution of the Fusion Boundary in Ferritic-Austenitic Dissimilar Metal Welds -Part 2: On-Cooling Transformations," J. Weld, vol. 79, pp. 267 (2000)
  10. K. Hono, "Atom probe microanalysis and nanoscale microstructures in metallic materials" Acta Mater., vol. 47, pp. 3127 (1999) https://doi.org/10.1016/S1359-6454(99)00175-5
  11. D. Hudson and G.D.W. Smith, "Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe", Scripta Mater., Vol. 61, pp. 411 (2009) https://doi.org/10.1016/j.scriptamat.2009.04.032
  12. A. Cerezo, P.H. Clifton, S. Lozano-Perez, P. Panayi and G. Sha, "Overview: Recent Progress in Three-Dimensional Atom Probe Instruments and Applications", Microsc. Microanal., vol. 13, pp. 408 (2007) https://doi.org/10.1017/S143192760707095X
  13. E.A. Marquis, R. Hu and T. Rousseau, "A systematic approach for the study of radiation-induced segregation/depletion at grain boundaries in steels", J. Nucl. Mater., vol. 413, pp. 1 (2011) https://doi.org/10.1016/j.jnucmat.2011.03.023
  14. A.R. Waugh, M.J. Southon, "Surface studies with an imaging atom-probe", Surf. Sci., Vol. 68, pp. 79 (1977) https://doi.org/10.1016/0039-6028(77)90192-3
  15. B.W. Krakauer and D.N. Seidman, "Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces" Phys. Rev. B, Vol. 48, pp. 6724 (1993) https://doi.org/10.1103/PhysRevB.48.6724
  16. D. Blavette, E. Cadel, C. Pareige, B. Deconihout and P. Caron, "Phase transformation and segregation to lattice defects in Ni-base superalloys", Microsc. Microanal., Vol. 13, pp. 46, (2007)
  17. E.A. Marquis and J.M. Hyde, "Applications of atom-probe tomography to the characterisation of solute behavior", Mater. Sci. Eng. R, Vol. 69, pp. 3, (2010)
  18. K.J. Choi, J.J. Kim and J. H. Kim, "Nano-structural and nano-chemical analysis of Ni-base alloy/low alloy steel dissimilar metal weld interfaces", Nuclear Engineering and Technology (2012), doi: http://dx.doi.org/10.5516/NET.07.2012.009
  19. S. Lozano-Perez, "A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atomprobe analysis", Micron, vol. 39, pp. 320 (2008) https://doi.org/10.1016/j.micron.2007.12.003
  20. M.K Miller, K.F. Rusell, "Atom probe specimen preparation with a dual beam SEM/FIB miller", Ultramicroscopy, vol. 107, pp. 761 (2007) https://doi.org/10.1016/j.ultramic.2007.02.023
  21. M.K. Miller, K.F. Russell and G.B. Thompson, "Strategies for fabricating atom probe specimens with a dual beam FIB", Ultramicroscopy, Vol. 102, pp. 287 (2005) https://doi.org/10.1016/j.ultramic.2004.10.011
  22. K. Thompson, J.H. Booske, D.J. Larson, T.F. Kelly, "Three-dimensional atom mapping of dopants in Si nanostructures", Appl. Phys. Lett., vol. 87, pp. 52108-1-3 (2005) https://doi.org/10.1063/1.2005368
  23. M.K. Miller, M,A, Sokolov, R.K. Nanstad and K.F. Russel, "APT characterization of high nickel RPV steels", J. Nucl. Mater., vol. 351, pp. 187 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.013
  24. M.K. Miller and K.F. Russell, "Embrittlement of RPV steels: An atom probe tomography perspective", J. Nucl. Mater., vol. 271, pp. 145 (2007)
  25. M.K. Miller, A.A. Chernobaeva, Y.I. Shtrombakh, K.F Russell, R.K. Nanstad, D.Y. Erak and O.O. Zabusov, "Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing", J. Nucl. Mater., vol. 385, pp. 615 (2009) https://doi.org/10.1016/j.jnucmat.2009.01.299
  26. P.D. Styman, J.M. Hyde, K. Wilford, A. Morley and G.D.W. Smith, "Precipitation in long term thermally aged high copper, high nickel model RPV steel welds", Progress in Nuclear Energy Vol. 57, pp. 86 (2012)
  27. J.D. Parker and G.C. Stratford, "Characterization of microstructures in nickel based transition joints," J. Mater. Sci., vol. 35, pp. 4099 (2000) https://doi.org/10.1023/A:1004846607046
  28. J.D. Dupont and R. E. Mizia, "Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator," INL/EXT-10-18459, Idaho National Laboratory (2010)