DOI QR코드

DOI QR Code

Effects of Hypoxia on the Fertilization and Early Development of Sea Urchin, Strongylocentrotus nudus

둥근성게 (Strongylocentrotus nudus)의 수정과 초기 배발생에 미치는 빈산소의 영향

  • Lee, Gun-Sup (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Hwang, Jin-Ik (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Chung, Young-Jae (Department of Life Science and Biotechnology, Shin Gyeong University) ;
  • Kim, Dong-Giun (Department of Biological Science, Silla University) ;
  • Moh, Sang-Hyun (Anti-aging Research Institute of BIO-FD&C Co., Ltd.) ;
  • Chang, Man (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Lee, Taek-Kyun (South Sea Environment Research Department, Korea Ocean Research and Development Institute)
  • Received : 2012.06.26
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

Dissolved oxygen is one of the most important factors controlling growth in aquatic organisms. Hypoxia is generally defined as dissolved oxygen less than 2.8 mg $O_2/L$ (equivalent to 2 mL $O_2/L$ or 91.4 mM). Therefore, hypoxia zone can cause a serious problem in marine ecosystem. In this study, to investigate embryotoxic (fertilization and embryo development rates) effects of hypoxia on sea urchin Strongylocentrotus nudus were exposed to dissolved oxygen levels of 7.6 mg $O_2/L$ (normoxia) and 1.8 mg $O_2/L$ (hypoxia) for 2 days at $15^{\circ}C$ and 33 ‰. Also, Expression levels of stress related gene (HSP70) and antioxidant related gene (glutathione reductase) in the sea urchins exposed to hypoxia were confirmed by Immunoblotting and RT-PCR analysis. In results, we showed that developmental rates were dramatically reduced in hypoxia condition. Molecular analysis demonstrated that higher HSP70 (5.5 fold) and glutathione reductase gene (2.79 fold) were present in the sea urchin exposed to hypoxia. Our results suggested that hypoxia can cause the abnormal development and elicits a stress and antioxidant response on sea urchin.

용존산소란 수생생물의 생장을 조절하는 가장 중요한 요소 중의 하나이다. 일반적으로 빈산소란 2.8 mg $O_2/L$ (91.4 mM과 동량) 이하의 용존산소로 정의된다. 따라서 빈산소 해역은 해양생태계에서 심각한 문제를 야기할 수 있다. 본 연구에서는 성게에 대한 빈산소의 배아독성 (수정 및 배발생률) 영향을 연구하기 위하여 둥근성게 (Strongylocentrotus nudus)를 용존산소 7.6 mg $O_2/L$ (normoxia)과 1.8 mg $O_2/L$ (hypoxia)에서 2일, $15^{\circ}C$ 및 33 ‰에 노출하였다. 또한 빈산소에 노출된 성게에서의 스트레스 관련유전자인 HSP70과 항산화 관련 유전자인 glutathione reductase의 발현을 immunoblotting assay와 RT-PCR을 통하여 확인하였다. 연구결과 배발생률이 현저하게 감소하였다. 분자분석 결과 빈산소에 노출된 성게가 정상상태의 성게에 비해 HSP70 단백질은 약 5.5배 glutathione reductase는 약 2.79배 증가하였다. 본 연구의 결과는 빈산소가 성게의 비정상적 배발생을 유도하며, 스트레스와 항산화 반응을 유발할 수 있음을 추측케 한다.

Keywords

References

  1. R. J. Diaz, and R. Rosenberg, "Spreading dead zones and consequences for marine ecosystems", Science, 321, 926-929, 2008. https://doi.org/10.1126/science.1156401
  2. R. Vaquer-Sunyer, and C. M. Duarte, "Thresholds of hypoxia for marine biodiversity", Proceedings of the National Academy of Sciences, 105, 15452, 2008.
  3. A. Fuji, "Studies on the biology of the sea urchin: Size at First Maturity and Sexuality of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius", Bulletin of the faculty of fisheries Hokkaido university, 11, 43-48, 1960.
  4. A. Fuji, "Studies on the biology of the sea urchin: Superficial and Histological Gonadal Changes in Gametogenic Process of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius", Bulletin of the faculty of fisheries Hokkaido university, 11, 1-14, 1960.
  5. R. Beiras, E. His, and M. N. L. Seaman, "Effects of storage temperature and duration on toxicity of sediments assessed by Crassostrea gigas oyster embryo bioassay.", Environmental Toxicology and Chemistry, 17, 2100-2105, 1998. https://doi.org/10.1002/etc.5620171028
  6. J. Bellas, R. Beiras, J. C. Marino-Balsa, and N. Fernandez, "Toxicity of organic compounds to marine invertebrate embryos and larvae :a comparison between the sea urchin embryogenesis bioassay and alternative test species.", Ecotoxicology, 14, 337-353, 2005. https://doi.org/10.1007/s10646-004-6370-y
  7. L. Hood, and N. Fernandez, "Gene regulatory networks and embryonic specification.", Proceedings of the National Academy of Sciences, 105, 5951-5952, 2008. https://doi.org/10.1073/pnas.0801434105
  8. S. Lindquist, and E. A. Craig, "The heat-shock proteins", Annu. Rev. Genet. 22, 631-677, 1998.
  9. H. R. B. Pelham, "Functions of the hsp70 protein family: an overview", in: R.I. Morimoto, A. Tissiers, G. Georgopoulos (Eds.), Stress Proteins in Biology and Medicine Cold Spring, Harbor Laboratory Press, Cold Spring Harbor, NY, 287-.299, 1990.
  10. A. Doyotte, C. Cossu, M. C. Jacquin, M. Babut, and P. Vasseur, "Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus", Aquatic Toxicology, 39, 93-110, 1997 https://doi.org/10.1016/S0166-445X(97)00024-6
  11. M. J. Gething, J. F. Sambrook, and N. Fernandez, "Protein folding in the cell", Nature, 355, 33-45. 1992 https://doi.org/10.1038/355033a0
  12. B. Bukau, and A. L. Horwich, "The Hsp70 and Hsp60 chaperone machines", Cell, 92, 351-.366, 1998 https://doi.org/10.1016/S0092-8674(00)80928-9
  13. R. J. Ellis, and S. M. van der Vies, "Molecular chaperones", Annu. Rev. Biochem., 60, 321-347, 1991. https://doi.org/10.1146/annurev.bi.60.070191.001541
  14. F. U. Hartl, and M. Hayer-Hartl, "Molecular chaperones in the cytosol: from nascent chain to folded protein", Science, 295, 1852-1858, 2002 https://doi.org/10.1126/science.1068408
  15. W. J. Chirico, M. G. Waters, and G. Blobel, "70K heat shock related proteins stimulate protein translocation into microsomes", Nature, 332, 805-.810, 1988. https://doi.org/10.1038/332805a0
  16. Y. Shi, and J. O. Thomas, "The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate", Mol. Cell. Biol., 12, 2186-2192, 1992. https://doi.org/10.1128/MCB.12.5.2186
  17. C. R. Brown, L. Q. Hong-Brown, S. J. Doxsey, R. L. Martin, and W. J. Welch, "Molecular chaperones and the centrosome. A role for HSP73 in centrosomal repair following heat shock treatment", J. Biol. Chem., 271, 833-.840, 1996. https://doi.org/10.1074/jbc.271.2.833
  18. C. Agueli, F. Geraci, G. Giudice, L. Chimenti, D. Cascino, and G. Sconzo, "A constitutive 70 kDa heat-shock protein is localized on the fibres of spindles and asters at metaphase in an ATP dependent manner: a new chaperone role is proposed", Biochem. J., 360, 413-.419, 2001. https://doi.org/10.1042/0264-6021:3600413
  19. G. Sconzo, G. Scardina, and M. G. Ferraro, "Characterization of a new member of the sea urchin Paracentrotus lividus hsp70 gene family and its expression", Gene, 121, 353-358, 1992. https://doi.org/10.1016/0378-1119(92)90143-D
  20. L. Gomez, G. Noctor, M. Knight, and C. H. Foyer, "Regulation of calcium signalling and gene expression by glutathione.", Journal of experimental botany, 55, 1851-1859, 2004. https://doi.org/10.1093/jxb/erh202
  21. C. H. Foyer, and G. Noctor, "Oxidant and antioxidant signalling in plants: a re evaluation of the concept of oxidative stress in a physiological context.", Plant Cell & Environment, 28, 1056-1071, 2005. https://doi.org/10.1111/j.1365-3040.2005.01327.x
  22. I. Rudneva, "Antioxidant system of Black Sea animals in early development.", Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 122, 265-271, 1999. https://doi.org/10.1016/S0742-8413(98)10121-4
  23. G. G. Yannarelli, A. J. Fernandez-Alvarez, D. M. Santa-Cruz, and M. L. Tomaro, "Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress.", Phytochemistry, 68, 505-512, 2007. https://doi.org/10.1016/j.phytochem.2006.11.016
  24. D. Epel, "Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes", Curr Top Dev Biol, 12, 185-246, 1978. https://doi.org/10.1016/S0070-2153(08)60597-9
  25. K. J. Park, S. H. Lee, T. I. Kim, H. W. Lee, C. H. Lee, E. H. Kim, J. Y. Jang, K. S. Choi, M. H. Kwon, and Y. S. Kim, "A human scFv antibody against TRAIL receptor 2 induces autophagic cell death in both TRAIL-sensitive and TRAIL-resistant cancer cells", Cancer Res, 67, 7327-34, 2007. https://doi.org/10.1158/0008-5472.CAN-06-4766
  26. R. Haimov-Kochman, S. J. Fisher, and V. D. Winn, "Modification of the standard Trizol-based technique improves the integrity of RNA isolated from RNase-rich placental tissue", Clin Chem, 52, 159-60, 2006. https://doi.org/10.1373/clinchem.2005.059758
  27. E. H. H. Shang, and R. S. S. Wu, "Aquatic hypoxia is a teratogen and affects fish embryonic development", Environmental science & technology, 38, 4763-4767, 2004. https://doi.org/10.1021/es0496423
  28. C. Ton, D. Stamatiou, V. J. Dzau, and C. C. Liew, "Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development", Biochemical and Biophysical Research Communications, 296, 1134-1142, 2002. https://doi.org/10.1016/S0006-291X(02)02010-7
  29. M. S. Clark, and L. S. Peck, "Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna)", Cell Stress and Chaperones, 14, 649-660, 2009. https://doi.org/10.1007/s12192-009-0117-x

Cited by

  1. The Expression of Hsp70 and GST Genes in Mytilus coruscus during Air Exposure and Starvation vol.32, pp.2, 2016, https://doi.org/10.9710/kjm.2016.32.2.73